Journal Information
Vol. 15. Issue 3.
Pages 195-199 (May - June 2011)
Share
Share
Download PDF
More article options
Vol. 15. Issue 3.
Pages 195-199 (May - June 2011)
Open Access
Metallo-β-lactamase and genetic diversity of Pseudomonas aeruginosa in intensive care units in Campo Grande, MS, Brazil
Visits
2539
Ana Claudia Souza Rodrigues1,
Corresponding author
anaclaurod@yahoo.com.br

Ana Claudia Souza Rodrigues Rua Melanias Barbosa, 380. Bloco 3 ap. 302 Taquarussu, Campo Grande MS/Brasil Phone: 67- 33319974/67-84016036/(Fax:) 33227107.
, Marilene Rodrigues Chang2, Gabriela Dorn Nóbrega3, Mayara Souza Rodrigues3, Nadia Cristina Pereira Carvalho4, Beatriz Garcia Gomes5, Dênio Lopes de Almeida6, Karyne Rangel Carvalho7, Marise Dutra Asensi8
1 Health and Development Post-graduation Program, Central-West Region, Universidade Federal de Mato Grosso do Sul, MS, Brazil
2 Department of Pharmacy and Biochemistry, Universidade Federal de Mato Grosso do Sul, MS, Brazil
3 Department of Pharmacy and Biochemistry, Universidade Federal de Mato Grosso do Sul, MS, Brazil
4 Hospital Universitário, Universidade Federal de Mato Grosso do Sul, MS, Brazil
5 Hospital Regional de Mato Grosso do Sul, MS, Brazil
6 Department of Pharmacy and Biochemistry, Universidade Federal de Mato Grosso do Sul, MS, Brazil
7 Laboratório de Pesquisa em Infecção Hospitalar/IOC/FIOCRUZ, RJ, Brazil
8 Laboratório de Pesquisa em Infecção Hospitalar/IOC/ FIOCRUZ, RJ, Brazil
This item has received

Under a Creative Commons license
Article information
Abstract

Infection by Pseudomonas aeruginosa has spread worldwide, with limited options for treatment. The purpose of this study was to investigate metallo-β-lactamase-producing P. aeruginosa strains and compare their genetic profile using samples collected from patients in intensive care units. Forty P. aeruginosa strains were isolated from two public hospitals in Campo Grande, Mato Grosso do Sul State, from January 1st, 2007 to June 31st, 2008. Profiles of antimicrobial susceptibility were determined using the agar diffusion method. Metallo-β-lactamase was investigated using the double-disk diffusion test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Respiratory and urinary tracts were the most common isolation sites. Of the 40 samples tested, 72.5% (29/40) were resistant to ceftazidime and 92.5% (37/40) to imipenem, whereas 65% (26/40) were resistant to both antimicrobials. Fifteen pan-resistant samples were found. Five percent (2/40) of samples were positive for metallo-β-lactamase on the phenotype test. No metallo-β-lactamase subtype was detected by PCR. Macrorestriction analysis revealed 14 distinct genetic patterns. Based on the superior accuracy of PCR, it can be inferred that P. aeruginosa isolates from the investigated hospitals have alternative mechanisms of carbapenem resistance. The results also suggest clonal spread of P. aeruginosa between the studied hospitals.

Keywords:
Pseudomonas aeruginosa
drug resistance, multiple
beta-lactamases
electrophoresis
gel
pulsed-field
Full text is only aviable in PDF
References
[1.]
A. Agodi, M. Barchitta, R. Cipresso, L. Giaquinta, M.A. Romeo, C. Denaro.
Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients.
Intensive Care Med, 33 (2007), pp. 1155-1161
[2.]
A.P. Zavascki, A.L. Barth, A.L. Goncalves, et al.
The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections.
J Antimicrob Chemother, 58 (2006), pp. 387-392
[3.]
A.C. Gales, L.C. Menezes, S. Silbert, H.S. Sader.
Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase.
J Antimicrob Chemother, 52 (2003), pp. 699-702
[4.]
D.M. Livermore.
Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?.
Clin Infect Dis, 34 (2002), pp. 634-640
[5.]
J.D. Pitout, B.L. Chow, D.B. Gregson, K.B. Laupland, S. Elsayed, D.L. Church.
Molecular epidemiology of metallo-beta-lactamase- producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates.
J Clin Microbiol, 45 (2007), pp. 294-298
[6.]
D. Yong, Y.S. Choi, K.H. Roh, et al.
Increasing prevalence and diversity of metallo-beta-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea.
Antimicrob Agents Chemother, 50 (2006), pp. 1884-1886
[7.]
G.L. Gilardi.
Practical schema for the identification of nonfermentative gram negative bacteria encountered in medical bacteriology.
Am J Med Technol, 38 (1972), pp. 65-72
[8.]
CLSI. Clinical Laboratory Standard of Institute. Performance standards for antimicrobial susceptibility testing 2007; M100- S17
[9.]
Y. Arakawa, N. Shibata, K. Shibayama, et al.
Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds.
J Clin Microbiol, 38 (2000), pp. 40-43
[10.]
R.C. Picao, S.S. Andrade, A.G. Nicoletti, et al.
Metallo-beta-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM- SPM-, or VIM-producing isolates.
J Clin Microbiol, 46 (2008), pp. 2028-2037
[11.]
K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich.
Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction.
Cold Spring Harb Symp Quant Biol, 1 (1986), pp. 263-273
[12.]
S. Kimura, J. Alba, K. Shiroto, et al.
Clonal diversity of metallobeta- lactamase-possessing Pseudomonas aeruginosa in geographically diverse regions of Japan.
J Clin Microbiol, 43 (2005), pp. 458-461
[13.]
S.H. Jeong, I.K. Bae, K.O. Park, et al.
Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea.
J Microbiol, 44 (2006), pp. 423-431
[14.]
C.M. Romao, Y.N. Faria, L.R. Pereira, M.D. Asensi.
Susceptibility of clinical isolates of multiresistant Pseudomonas aeruginosa to a hospital disinfectant and molecular typing.
Mem Inst Oswaldo Cruz, 100 (2005), pp. 541-548
[15.]
M.R. Chang, N.C. Carvalho, A.L. Oliveira, P.M. Moncada, B.A. Moraes, M.D. Asensi.
Surveillance of pediatric infections in a teaching hospital in Mato Grosso do Sul.
Brazil. Braz J Infect Dis, 7 (2003), pp. 149-160
[16.]
T.P. Lodise, C.D. Miller, J. Graves, et al.
Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance.
Antimicrob Agents Chemother, 51 (2007), pp. 417-422
[17.]
A.P. Zavascki, A.L. Barth, J.F. Fernandes, A.L. Moro, A.L. Goncalves, L.Z. Goldani.
Reappraisal of Pseudomonas aeruginosa hospitalacquired pneumonia mortality in the era of metallo-beta-lactamase- mediated multidrug resistance: a prospective observational study.
Crit Care, 10 (2006), pp. R114
[18.]
H.S. Sader, A.C. Gales, M.A. Pfaller, et al.
Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program.
Braz J Infect Dis, 5 (2001), pp. 200-214
[19.]
G.H. Furtado, S.T. Martins, A.M. Machado, S.B. Wey, E.A. Medeiros.
Clinical culture surveillance of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter species in a teaching hospital in Sao Paulo Brazil: a 7-year study.
Infect Control Hosp Epidemiol, 27 (2006), pp. 1270-1273
[20.]
N.S. Raja, N.N. Singh.
Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital.
J Microbiol Immunol Infect, 40 (2007), pp. 45-49
[21.]
M.E. Evans, D.J. Feola, R.P. Rapp, Polymyxin B.
sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria.
Ann Pharmacother, 33 (1999), pp. 960-967
[22.]
D. Aubert, L. Poirel, J. Chevalier, S. Leotard, J.M. Pages, P. Nordmann.
Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 45 (2001), pp. 1615-1620
[23.]
P. Giakkoupi, G. Petrikkos, L.S. Tzouvelekis, S. Tsonas, N.J. Legakis, A.C. Vatopoulos.
Spread of integron-associated VIM-type metallo-beta-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals.
J Clin Microbiol, 41 (2003), pp. 822-825
[24.]
T. Graf, D.B. Fuentefria, G. Corcao.
[Occurrence of multiresistant strains of Pseudomonas aeruginosa producing metallobeta- lactamase blaSPM-1 in clinical samples].
Rev Soc Bras Med Trop, 41 (2008), pp. 306-308
[25.]
A.P. Carvalho, R.M. Albano, D.N. de Oliveira, D.A. Cidade, L.M. Teixeira, A. Marques Ede.
Characterization of an epidemic carbapenem- resistant Pseudomonas aeruginosa producing SPM-1 metallo-beta-lactamase in a hospital located in Rio de Janeiro.
Brazil. Microb Drug Resist, 12 (2006), pp. 103-108
[26.]
D.C. Goncalves, A.B. Lima, L.S. Leao, J.R. Filho, F.C. Pimenta, J.D. Vieira.
[Detection of metallo-beta-lactamase in Pseudomonas aeruginosa isolated from hospitalized patients in Goiania.
State of Goias]. Rev Soc Bras Med Trop, 42 (2009), pp. 411-414
[27.]
C.M. Figueiredo-Mendes, S. Sinto, J.L. Mello-Sampaio, et al.
Pseudomonas aeruginosa clonal dissemination in Brazilian intensive care units.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 402-405
Copyright © 2011. Elsevier Editora Ltda.. All rights reserved
The Brazilian Journal of Infectious Diseases
Article options
Tools