Journal Information
Vol. 14. Issue 1.
Pages 96-108 (January - February 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 1.
Pages 96-108 (January - February 2010)
Case reports
Open Access
Novel pharmaceutical molecules against emerging resistant gram-positive cocci
Visits
2576
Roberto Manfredi
Corresponding author
Roberto.manfredi@unibo.it

Correspondence to: Associate Professor of Infectious Diseases, University of Bologna c/o Infectious Diseases, S. Orsola Hospital Via Massarenti 11 I-40138 Bologna, Italy Tel: +39-051-6363355; fax: +39-051-343500.
, Sergio Sabbatani
Department of Internal, Medicine, Aging, and Nephrological Diseases, Division of Infectious Diseases, “Alma Mater Studiorum” University of Bologna, S. Orsola Hospital, Bologna, ItalyDiyarbakir, Turkey
This item has received

Under a Creative Commons license
Article information
Abstract
Introduction

methicillin- and also vancomycin (glycopeptide)-resistant Gram-positive organisms have emerged as an increasingly problematic cause of hospital-acquired infections, also spreading into the community. Vancomycin (glycopeptide) resistance has emerged primarily among Enterococci, but the MIC values of vancomycin for the entire Staphylococcus species are also increasing worldwide.

Material and Methods

the aim of our review is to evaluate the efficacy and tolerability of newer antibiotics with activity against methicillin-resistant and glycopeptide-resistant Gram-positive cocci, on the ground of our experience at a tertiary care metropolitan Hospital, and the most recent literature evidences in this field.

Results

Quinupristin- dalfopristin, linezolid, daptomycin, and tigecycline show an excellent in vitro activity, comparable to the activity of vancomycin and teicoplanin for methicillin-resistant staphylococci, and superior to the one that vancomycin for vancomycin-resistant isolates. Dalbavancin, televancin, and oritavancin are new lipoglycopeptide agents with excellent activity against Gram-positive cocci, and have superior pharmacodynamics properties compared to vancomycin. We review the bacterial spectrum, clinical indications and practical use, pharmacologic properties, and expected adverse events and contraindications associated with each of these novel antimicrobial agents, compared with the present standard of care.

Discussion

linezolid activity is substantially comparable to that of vancomycin in patients with methicillin-resistant Staphylococcus aureus (MRSA) pneumonia, although its penetration into the respiratory tract is exceptionally elevated. Tigecycline has activity against both Enterococus species and MRSA; it is also active against a broad spectrum of Enterobacteriaceae and anaerobes, which allows for use intraabdominal, diabetic foot and surgical infections. Daptomycin has a rapid bactericidal activity for Staphylococcus aureus and it is approved in severe complications, such as bacteremia and right-sided endocarditis. It cannot be used to treat pneumonia and respiratory diseases, due to its inactivation in the presence of pulmonary surfactant.

Keywords:
resistant gram-positive cocci
staphylococci
enterococci
pneumococci
streptococci
epidemiology
clinical issues
novel antimicrobial compounds
characteristics
literature evidences
Full text is only aviable in PDF
References
[1.]
J.K. Foster, J.R. Lentino, R. Strodtman, C. DiVincenzo.
Comparison of in vitro activity of quinolone antibiotics and vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus by time-kill kinetic studies.
Antimicrob Agents Chemother, 30 (1986), pp. 823-827
[2.]
S.M. Tallent, T. Bischoff, M. Climo, B. Ostrowsky, R.P. Wenzel, M.B. Edmond.
Vancomycin susceptibility of oxacillin-resistant Staphylococcus aureus isolates causing nosocomial bloodstream infections.
J Clin Microbiol, 40 (2002), pp. 2249-2250
[3.]
K. Sieradzki, T. Leski, J. Dick, L. Borio, A. Tomasz.
Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy.
J Clin Microbiol, 41 (2003), pp. 1687-1693
[4.]
B.E. Murray.
Vancomycin-resistant enterococci.
Am J Med, 102 (1997), pp. 284-293
[5.]
K. Okuma, K. Iwakawa, J.D. Turnidge, et al.
Dissemination of newmethicillin-resistant Staphylococcus aureus clones in the community.
J Clin Microbiol, 40 (2002), pp. 4289-4294
[6.]
R.S. Schwalbe, J.T. Stapleton, P.H. Gilligan.
Emergence of vancomycin resistance in coagulase-negative staphylococci.
N Engl J Med, 316 (1987), pp. 927-931
[7.]
K. Hiramatsu, H. Hanaki, T. Ino, K. Yabuta, T. Oguri, F.C. Tenover.
Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility.
J Antimicrob Chemother, 40 (1997), pp. 135-136
[8.]
P.C. Appelbaum.
MRSA-the tip of the iceberg.
Clin Microbiol Infect, 12 (2006), pp. 3-10
[9.]
MMWR. Staphylococcus aureus resistant to vancomycin-United States 2002. Vol. 51 (26): 565.567RE, 2002.
[10.]
S. Chang, D.M. Sievert, J.C. Hageman, et al.
Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene.
N Engl J Med, 348 (2003), pp. 1342-1347
[11.]
M.D. King, B.J. Humphrey, Y.F. Wang, E.V. Kourbatova, S.M. Ray, H.M. Blumberg.
Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections.
Ann Intern Med, 144 (2006), pp. 309-317
[12.]
R.C. Moellering Jr.
The growing menace of community-acquired methicillin-resistant Staphylococcus aureus.
Ann Intern Med, 144 (2006), pp. 368-370
[13.]
G.A. Noskin, R.J. Rubin, J.J. Schentag, et al.
The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database.
Arch Intern Med, 165 (2005), pp. 1756-1761
[14.]
M.E. Rupp, G.L. Archer.
Coagulase-negative Staphylococci: pathogens associated with medical progress.
Clin Infect Dis, 19 (1994), pp. 231-243
[15.]
F. Schaaff, A. Reipert, G. Bierbaum.
An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus.
Antimicrob Agents Chemother, 46 (2002), pp. 3540-3548
[16.]
F.Y. Chang, J.E. Peacock Jr, D.M. Musher, et al.
Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study.
Medicine (Baltimore), 82 (2003), pp. 333-339
[17.]
N. Markowitz, E.L. Quinn, L.D. Saravolatz.
Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection.
Ann Intern Med, 117 (1992), pp. 390-398
[18.]
K. Becker, A.W. Friedrich, G. Lubritz, M. Weilert, G. Peters, C Von Eiff.
Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens.
J Clin Microbiol, 41 (2003), pp. 1434-1439
[19.]
F.D. Lowy.
Staphylococcus aureus infections.
N Engl J Med, 339 (1998), pp. 520-532
[20.]
G. Sakoulas, R.C. Moellering Jr, G.M. Eliopoulos.
Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy.
Clin Infect Dis, 42 (2006), pp. S40-S50
[21.]
R.M. Donlan, J.W. Costerton.
Biofilms: survival mechanisms of clinically relevant microorganisms.
Clin Microbiol Rev, 15 (2002), pp. 167-193
[22.]
N.C. Caiazza, G.A. O’Toole.
Alpha-toxin is required for biofilm formation by Staphylococcus aureus.
J Bacteriol, 185 (2003), pp. 3214-3217
[23.]
C. von Eiff, G. Peters, C. Heilmann.
Pathogenesis of infections due to coagulase-negative Staphylococci.
Lancet Infect Dis, 2 (2002), pp. 677-685
[24.]
V.L. Yu, C.C. Chiou, C. Feldman, et al.
An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome.
Clin Infect Dis, 37 (2003), pp. 230-237
[25.]
L.R. Peterson.
Penicillins for treatment of pneumococcal pneumonia: does in vitro resistance really matter?.
Clin Infect Dis, 42 (2006), pp. 224-233
[26.]
J.R. Lonks, J. Garau, L. Gomez, et al.
Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae.
Clin Infect Dis, 35 (2002), pp. 556-564
[27.]
J.J. Schentag, K.P. Klugman, V.L. Yu, et al.
Streptococcus pneumoniae bacteremias: pharmacodynamic correlations with outcome and macrolide resistance: a controlled study.
Int J Antimicrob Agents, 30 (2007), pp. 264-269
[28.]
D.D.R. Greenberg, K. Klugman, S.A. Madhi, et al.
Streptococcus pneumoniae serotypes causing meningitis in children and adults.
Proceedings of the 14th ICAAC Conference,
[29.]
C.F. Carpenter, H.F. Chambers.
Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens.
Clin Infect Dis, 38 (2004), pp. 994-1000
[30.]
C. Fenton, G.M. Keating, M.P. Curran.
Daptomycin.
Drugs, 64 (2004), pp. 445-455
[31.]
J.N. Steenbergen, J. Alder, G.M. Thorne, F.P. Tally.
Daptomycin: a lipopeptide antibiotic for the treatment of serious Grampositive infections.
J Antimicrob Chemother, 55 (2005), pp. 283-288
[32.]
C.A. Schriever, C. Fernandez, K.A. Rodvold, L.H. Danziger.
Daptomycin: a novel cyclic lipopeptide antimicrobial.
Am J Health Syst Pharm, 62 (2005), pp. 1145-1158
[33.]
R.C. Moellering.
Linezolid: the first oxazolidinone antimicrobial.
Ann Intern Med, 138 (2003), pp. 135-142
[34.]
M.C. Birmingham, C.R. Rayner, A.K. Meagher, S.M. Flavin, D.H. Batts, J.J. Schentag.
Linezolid for the treatment of multidrugresistant, gram-positive infections: experience from a compassionate-use program.
Clin Infect Dis, 36 (2003), pp. 159-168
[35.]
K.L. LaPlante, M.J. Rybak.
Daptomycin - a novel antibiotic against Gram-positive pathogens.
Expert Opin Pharmacother, 5 (2004), pp. 2321-2331
[36.]
L. Jeu, H.B. Fung.
Daptomycin: a cyclic lipopeptide antimicrobial agent.
Clin Ther, 26 (2004), pp. 1728-1757
[37.]
J.D. Alder.
Daptomycin: a new drug class for the treatment of Gram-positive infections.
Drugs Today (Barc), 41 (2005), pp. 81-90
[38.]
D.M. Livermore.
Tigecycline: what is it, and where should it be used?.
J Antimicrob Chemother, 56 (2005), pp. 611-614
[39.]
G.A. Pankey.
Tigecycline.
J Antimicrob Chemother, 56 (2005), pp. 470-480
[40.]
F. Van Bambeke, Y. Van Laethem, P. Courvalin, P.M. Tulkens.
Glycopeptide antibiotics: from conventional molecules to new derivatives.
Drugs, 64 (2004), pp. 913-936
[41.]
Virginlar N. MA. Glycopeptides (Dalbavancin, Oritavancin, Teicoplanin, Vancomycin). In: Yu VL, Eds. Antimicrobial Therapy and Vaccines. Vol. II: Antimicrobial Agents: www.antimicrobe.org, 2004.
[42.]
E. Hershberger, S. Donabedian, K. Konstantinou, M.J. Zervos.
Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology.
Clin Infect Dis, 38 (2004), pp. 92-98
[43.]
A. Speciale, K. La Ferla, F. Caccamo, G. Nicoletti.
Antimicrobial activity of quinupristin/dalfopristin, a new injectable streptogramin with a wide Gram-positive spectrum.
Int J Antimicrob Agents, 13 (1999), pp. 21-28
[44.]
R.C. Moellering, P.K. Linden, J. Reinhardt, E.A. Blumberg, F. Bompart, G.H. Talbot.
The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency-Use Study Group.
J Antimicrob Chemother, 44 (1999), pp. 251-261
[45.]
R.L. Nichols, D.R. Graham, S.L. Barriere, et al.
Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group.
J Antimicrob Chemother, 44 (1999), pp. 263-273
[46.]
V.G. Meka, S.K. Pillai, G. Sakoulas, et al.
Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA.
J Infect Dis, 190 (2004), pp. 311-317
[47.]
J. Fagon, H. Patrick, D.W. Haas, et al.
Treatment of grampositive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group.
Am J Respir Crit Care Med, 161 (2000), pp. 753-762
[48.]
R.H. Drew, J.R. Perfect, L. Srinath, E. Kurkimilis, M. Dowzicky, G.H. Talbot.
Treatment of methicillin-resistant Staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. For the Synercid Emergency-Use Study Group.
J Antimicrob Chemother, 46 (2000), pp. 775-784
[49.]
P.L. Carver, E. Whang, H.L. VandenBussche, C.A. Kauffman, P.N. Malani.
Risk factors for arthralgias or myalgias associated with quinupristin-dalfopristin therapy.
Pharmacotherapy, 23 (2003), pp. 159-164
[50.]
I. Raad, R. Hachem, H. Hanna.
Relationship between myalgias/arthralgias occurring in patients receiving quinupristin/dalfopristin and biliary dysfunction.
J Antimicrob Chemother, 53 (2004), pp. 1105-1108
[51.]
D.J. Stalker, G.L. Jungbluth.
Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial.
Clin Pharmacokinet, 42 (2003), pp. 1129-1140
[52.]
J. Weigelt, K. Itani, D. Stevens, W. Lau, M. Dryden, C. Knirsch.
Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections.
Antimicrob Agents Chemother, 49 (2005), pp. 2260-2266
[53.]
E. Rubinstein, S. Cammarata, T. Oliphant, R. Wunderink.
Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study.
Clin Infect Dis, 32 (2001), pp. 402-412
[54.]
R.G. Wunderink, J. Rello, S.K. Cammarata, R.V. Croos-Dabrera, M.H. Kollef.
Linezolid vs vancomycin: analysis of two doubleblind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia.
Chest, 124 (2003), pp. 1789-1797
[55.]
C.R. Rayner, A. Forrest, A.K. Meagher, M.C. Birmingham, J.J. Schentag.
Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme.
Clin Pharmacokinet, 42 (2003), pp. 1411-1423
[56.]
C.R. Rayner, L.M. Baddour, M.C. Birmingham, C. Norden, A.K. Meagher, J.J. Schentag.
Linezolid in the treatment of osteomyelitis: results of compassionate use experience.
Infection, 32 (2004), pp. 8-14
[57.]
R.R. Razonable, D.R. Osmon, J.M. Steckelberg.
Linezolid therapy for orthopedic infections.
Mayo Clin Proc, 79 (2004), pp. 1137-1144
[58.]
A.M. Cook, C.N. Ramsey, C.A. Martin, T. Pittman.
Linezolid for the treatment of a heteroresistant Staphylococcus aureus shunt infection.
Pediatr Neurosurg, 41 (2005), pp. 102-104
[59.]
J.P. Rho, I.G. Sia, B.A. Crum, M.B. Dekutoski, R.T. Trousdale.
Linezolid-associated peripheral neuropathy.
Mayo Clin Proc, 79 (2004), pp. 927-930
[60.]
B. Spellberg, T. Yoo, A.S. Bayer.
Reversal of linezolid-associated cytopenias, but not peripheral neuropathy, by administration of vitamin B6.
J Antimicrob Chemother, 54 (2004), pp. 832-835
[61.]
L.S. Young.
Hematologic effects of linezolid versus vancomycin.
Clin Infect Dis, 38 (2004), pp. 1065-1066
[62.]
N. Rao, B.H. Ziran, M.M. Wagener, E.R. Santa, V.L. Yu.
Similar hematologic effects of longterm linezolid and vancomycin therapy in a prospective observational study of patients with orthopedic infections.
Clin Infect Dis, 38 (2004), pp. 1058-1064
[63.]
S.A. Nasraway, A.F. Shorr, D.J. Kuter, N. O’Grady, V.H. Le, S.K. Cammarata.
Linezolid does not increase the risk of thrombocytopenia in patients with nosocomial pneumonia: comparative analysis of linezolid and vancomycin use.
Clin Infect Dis, 37 (2003), pp. 1609-1616
[64.]
K. Kulkarni, L.V. Del Priore.
Linezolid induced toxic optic neuropathy.
Br J Ophthalmol, 89 (2005), pp. 1664-1665
[65.]
M.T. Narita, V.L. B Yu.
Linezolid-associated peripheral and optic neuropathy, lactic acidosid and serotonin syndrome: a review.
Pharmacotherapy, 27 (2007), pp. 1189-1197
[66.]
A. Soriano, O. Miro, J. Mensa.
Mitochondrial toxicity associated with linezolid.
N Engl J Med, 353 (2005), pp. 2305-2306
[67.]
L. Bernard, R. Stern, D. Lew, P. Hoffmeyer.
Serotonin syndrome after concomitant treatment with linezolid and citalopram.
Clin Infect Dis, 36 (2003), pp. 1197
[68.]
R.D. Arbeit, D. Maki, F.P. Tally, E. Campanaro, B.I. Eisenstein.
The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections.
Clin Infect Dis, 38 (2004), pp. 1673-1681
[69.]
V.G. Fowler, S. Cosgrove, E. Abrutyn, et al.
Daptomycin vs. Standard Therapy for Staphylococcus aureus Bacteremia (SAB) and Infective Endocarditis (SAIE).
45th Annual Interscience Congress on Antimicrobial Agents and Chemotherapy,
[70.]
LaPlante KL, Rybak, M.J. Daptomycin. Antimicrobial Therapy and Vaccines. Vol. II: Antimicrobial Agents: www.antimicrobe.org.
[71.]
G.G. Zhanel, K. Homenuik, K. Nichol, et al.
The glycylcyclines: a comparative review with the tetracyclines.
Drugs, 64 (2004), pp. 63-88
[72.]
I. Raad, R. Darouiche, J. Vazquez, et al.
Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens.
Clin Infect Dis, 40 (2005), pp. 374-380
[73.]
E. Seltzer, M.B. Dorr, B.P. Goldstein, M. Perry, J.A. Dowell, T. Henkel.
Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections.
Clin Infect Dis, 37 (2003), pp. 1298-1303
[74.]
G.W. Kaatz, S.M. Seo, J.R. Aeschlimann, H.H. Houlihan, R.C. Mercier, M.J. Rybak.
Efficacy of LY333328 against experimental methicillin-resistant Staphylococcus aureus endocarditis.
Antimicrob Agents Chemother, 42 (1998), pp. 981-983
[75.]
J. Gerber, A. Smirnov, A. Wellmer, et al.
Activity of LY333328 in experimental meningitis caused by a Streptococcus pneumoniae strain susceptible to penicillin.
Antimicrob Agents Chemother, 45 (2001), pp. 2169-2172
[76.]
H.O.R.W. Giamarellou, H. Harris, S. Owen, S. Porter, J. Loutit.
Phase 3 trial comparing 3-7 days of oritavancin vs. 10-14 days of vancomycin/cephalexin in the treatment of patients with complicated skin and skin structure infections (CSSI).
Program and abstracts of the 43rd ICAAC Conference,
[77.]
J.F. Barrett.
Recent developments in glycopeptide antibacterials.
Curr Opin Investig Drugs, 6 (2005), pp. 781-790
[78.]
J.P. Shaw, J. Seroogy, K. Kaniga, D.L. Higgins, M. Kitt, S. Barriere.
Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects.
Antimicrob Agents Chemother, 49 (2005), pp. 195-201
[79.]
S.S. Hegde, N. Reyes, T. Wiens, et al.
Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria.
Antimicrob Agents Chemother, 48 (2004), pp. 3043-3050
[80.]
M.E. Stryjewski, V.H. Chu, W.D. O’Riordan, et al.
Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study.
Antimicrob Agents Chemother, 50 (2006), pp. 862-867
[81.]
M.E. Stryjewski, W.D. O’Riordan, W.K. Lau, et al.
Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria.
Clin Infect Dis, 40 (2005), pp. 1601-1607
[82.]
C.O. Aneziokoro, J.P. Cannon, C.T. Pachucki, J.R. Lentino.
The effectiveness and safety of oral linezolid for the primary and secondary treatment of osteomyelitis.
J Chemother, 17 (2005), pp. 643-650
[83.]
M.S. Finney, C.W. Crank, J. Segreti.
Use of daptomycin to treat drug-resistant Gram-positive bone and joint infections.
Curr Med Res Opin, 21 (2005), pp. 1923-1926
[84.]
S.J.H.M. Anthony, E. Angelos, C.W. Stratton.
Clinical Experience with daptomycin in Patients with Orthopedic-Related Infections.
43rd IDSA Annual Meeting 2005,
[85.]
L.Y. Yin, L. Lazzarini, F. Li, C.M. Stevens, J.H. Calhoun.
Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model.
J Antimicrob Chemother, 55 (2005), pp. 995-1002
[86.]
B.P. Howden, P.B. Ward, P.G. Charles, et al.
Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility.
Clin Infect Dis, 38 (2004), pp. 521-528
[87.]
V.G. Fowler Jr, H.W. Boucher, G.R. Corey, et al.
Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.
N Engl J Med, 355 (2006), pp. 653-665
[88.]
C.W. Woods, A.C. Cheng, V.G. Fowler Jr, et al.
Endocarditis caused by Staphylococcus aureus with reduced susceptibility to vancomycin.
Clin Infect Dis, 38 (2004), pp. 1188-1191
[89.]
F.Y. Chiang, M. Climo.
Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother, 47 (2003), pp. 3002-3004
[90.]
FDA. Information for Healthcare Professionals: Linezolid (marketed as Zyvox) March 16, 2007, 2007.
[91.]
M.E. Falagas, K.G. Manta, F. Ntziora, K.Z. Vardakas.
Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence.
J Antimicrob Chemother, 58 (2006), pp. 273-280
[92.]
S.L. Kang, M.J. Rybak.
In-vitro bactericidal activity of quinupristin/dalfopristin alone and in combination against resistant strains of Enterococcus species and Staphylococcus aureus.
J Antimicrob Chemother, 39 (1997), pp. 33-39
[93.]
B.T. Tsuji, M.J. Rybak.
Short-course gentamicin in combination with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations.
Antimicrob Agents Chemother, 49 (2005), pp. 2735-2745
[94.]
P. Grohs, M.D. Kitzis, L. Gutmann.
In vitro bactericidal activities of linezolid in combination with vancomycin, gentamicin, ciprofloxacin, fusidic acid, and rifampin against Staphylococcus aureus.
Antimicrob Agents Chemother, 47 (2003), pp. 418-420
[95.]
C. Jacqueline, J. Caillon, V. Le Mabecque, et al.
In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods.
J Antimicrob Chemother, 51 (2003), pp. 857-864
[96.]
P.A. Moise-Broder, G. Sakoulas, G.M. Eliopoulos, J.J. Schentag, A. Forrest, R.C. Moellering Jr.
Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy.
Clin Infect Dis, 38 (2004), pp. 1700-1705
[97.]
B.T. Tsuji, M.J. Rybak.
Etest synergy testing of clinical isolates of Staphylococcus aureus demonstrating heterogeneous resistance to vancomycin.
Diagn Microbiol Infect Dis, 54 (2006), pp. 73-77
[98.]
K.L. LaPlante, M.J. Rybak.
Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model.
Antimicrob Agents Chemother, 48 (2004), pp. 4665-4672
[99.]
G. Sakoulas, G.M. Eliopoulos, J. Alder, C.T. Eliopoulos.
Efficacy of daptomycin in experimental endocarditis due to methicillinresistant Staphylococcus aureus.
Antimicrob Agents Chemother, 47 (2003), pp. 1714-1718
[100.]
A.R.W. Baltch, L. Bopp, et al.
Killing of methicillin-resistant Staphylococcus aureus by daptomycin, gentamicin, and rifampin, singly and in combination, in broth and in human monocytederived macrophages, with and without GM-CSF and Interferon Activation.
Proceedings of the 15th ICAAC Conference, 2005, Abstract E-1741, American Society of Microbiology,
[101.]
G.P. Allen, R. Cha, M.J. Rybak.
In vitro activities of quinupristin-dalfopristin and cefepime, alone and in combination with various antimicrobials, against multidrug-resistant Staphylococci and Enterococci in an in vitro pharmacodynamic model.
Antimicrob Agents Chemother, 46 (2002), pp. 2606-2612
[102.]
C.F. Dailey, P.J. Pagano, L.V. Buchanan, J.A. Paquette, J.V. Haas, J.K. Gibson.
Efficacy of linezolid plus rifampin in an experimental model of methicillin-susceptible Staphylococcus aureus endocarditis.
Antimicrob Agents Chemother, 47 (2003), pp. 2655-2658
[103.]
S.L. Kang, M.J. Rybak, B.J. McGrath, G.W. Kaatz, S.M. Seo.
Pharmacodynamics of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with rifampin, against methicillin-susceptible and -resistant Staphylococcus aureus in an in vitro infection model.
Antimicrob Agents Chemother, 38 (1994), pp. 2702-2709
[104.]
V. Zarrouk, B. Bozdogan, R. Leclercq, et al.
Activities of the combination of quinupristin-dalfopristin with rifampin in vitro and in experimental endocarditis due to Staphylococcus aureus strains with various phenotypes of resistance to macrolidelincosamide-streptogramin antibiotics.
Antimicrob Agents Chemother, 45 (2001), pp. 1244-1248
[105.]
H. Sambatakou, E.J. Giamarellos-Bourboulis, P. Grecka, Z. Chryssouli, H. Giamarellou.
In vitro activity and killing effect of quinupristin/dalfopristin (RP59500) on nosocomial Staphylococcus aureus and interactions with rifampicin and ciprofloxacin against methicillin-resistant isolates.
J Antimicrob Chemother, 41 (1998), pp. 349-355
[106.]
P.J. Petersen, P. Labthavikul, C.H. Jones, P.A. Bradford.
In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and timekill kinetic analysis.
J Antimicrob Chemother, 57 (2006), pp. 573-576
[107.]
R.C. Mercier, C. Kennedy, C. Meadows.
Antimicrobial activity of tigecycline (GAR-936) against Enterococcus faecium and Staphylococcus aureus used alone and in combination.
Pharmacotherapy, 22 (2002), pp. 1517-1523
Copyright © 2010. Elsevier Editora Ltda.. All rights reserved
The Brazilian Journal of Infectious Diseases
Article options
Tools