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ABSTRACT

This review will summarize the role of integrase in HIV-1 infection, the mechanism of integrase 

inhibitors and resistance with an emphasis on raltegravir (RAL), the fi rst integrase inhibitor licensed 

to treat HIV-1 infection.
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INTRODUCTION

The replication of all retroviruses including the 

Human Immunodefi ciency Virus Type 1 (HIV-1) 

requires three viral enzymes: reverse transcriptase 

(RT), protease (Pr) and integrase (In). The de-

velopment of inhibitors of reverse transcriptase 

and protease and the subsequent introduction 

of combination drug regimens which enhance 

the overall effi cacy and durability of therapy 

revolutionized the treatment of HIV-1 infection 

in the mid 1990’s. As the last of the three essen-

tial HIV-1 enzymes, integrase was considered an 

equally attractive target for antiretroviral drug de-

velopment as protease and reverse transcriptase, 

but it is only a decade later that the fi rst integrase 

inhibitor, raltegravir (RAL, MK-0518) achieved 

regulatory approval, reviewed in Cahn,1 while 

other integrase inhibitors including elvitegravir 

(EVG, GS-9137, JTK303) and soltegravir (S1360) 

are still in clinical development. In this review we 

will provide an overview of the biology and bio-

chemistry of integrase inhibitors and an update 

on our current understanding of resistance to this 

newest class of antiretroviral agents.

The role of integrase in HIV-1 replication

Integrase mediates the irreversible insertion 

or integration of the HIV-1 DNA into the host 

genomic DNA.2-4 Integration is required to 

maintain the HIV-1 genome in the infected cell 

and for the effi cient expression of all viral pro-

teins leading to the generation of new viruses. 

Integrase mediates three highly specifi c and co-

ordinated steps which are required for integra-

tion (Figure 1). Integrase initially assembles at 

specifi c sequences within the long terminal repeat 

Figure 1: Schematic representation of the multi-staged process of integration.
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(LTR) regions at each end of the fully reverse transcribed HIV-1 

DNA. In the context of this complex (termed pre-integration 

complex or PIC), integrase then catalyses the subsequent en-

zymatic reactions, 3’ end processing which removes the termi-

nal 3’ dinucleotide from each end of the viral DNA and strand 

transfer which results in the covalent linkage of the viral DNA 

and the host DNA.5 All integrase inhibitors in clinical develop-

ment to date specifi cally target the strand transfer reaction6-8 

and are thus alternately referred to as either integrase inhibitor 

(INIs) or more specifi cally integrase strand transfer inhibitors 

(InSTIs). In the context of the viral infection process, inhibition 

of integration results in an irreversible block to HIV-1 replica-

tion as the unintegrated viral DNA is subject to metabolism by 

a variety of cellular enzymes (Figure 1). Although most of the 

unintegrated viral DNA is degraded, recombination and repair 

processes in the cell can also generate 1 and 2 LTR circular DNA 

byproducts. These circles were fi rst described with integration 

defective HIV-1 viruses,9,10 but are now a hallmark of the effect 

of integrase inhibitors both in vitro and in vivo.11,12

The biochemistry of integrase inhibitors

Integrase strand transfer inhibitors or InSTIs have minimal ef-

fects on either the assembly of the integrase DNA complex 

or the 3’ end processing reaction. Their selective effect on the 

strand transfer reaction is a direct result of a now well-defi ned 

mechanism of action in which the inhibitor: 1) binds only to 

the specifi c complex between integrase and the viral DNA and 

not to integrase in the absence of the DNA, and 2) interacts with 

the two essential magnesium metal ion cofactors in the inte-

grase active site post assembly.13 All InSTIs therefore have two 

essential components to their chemical structure, a metal bind-

ing pharmacophore which sequesters the active site magnesium 

and a hydrophobic group which interacts with the viral DNA 

as well as the enzyme in the complex. (See model in Figure 2) 

The metal binding portion of these compounds is absolutely 

essential for inhibition while the hydrophobic component of 

the chemical structure is largely responsible for enhancing 

the overall affi nity and specifi city of the inhibitor in the 

integrase DNA complex.14 The recent co-crystallization of 

the Foamy virus integrase DNA complex or intasome with 

both RAL and EVG15 corroborates many of the original 

biochemical observations that led to this model and pro-

vides a structural basis for understanding the breadth of 

antiviral activity that has been observed for InSTIs across 

all HIV-1 subtypes as well as other retroviruses including 

HIV-2 and XMRV.16-22 In the co-crystal structure the gen-

eral architecture and amino acids within the active site of 

the Foamy virus intasome are highly conserved among ret-

roviral integrases, as are the immediate surrounding inter-

actions with InSTIs. 

The striking conservation of the active site interactions in 

the intasome would be consistent with the observation that 

mutations which engender resistance to InSTIs do not appear 

to be present as polymorphisms in the HIV-1 quasispecies at 

baseline in integrase inhibitor naïve patients.23-25 Baseline resist-

ance to RAL has not been detected in several studies including 

an analysis of both B and non-B subtypes. Primary InSTI mu-

tations have also not been detected in InSTI-naïve individuals, 

regardless of exposure to other antiretroviral agents or duration 

of HIV-1 disease. However, naturally occurring InSTI polymor-

phisms are present for integrase as for all HIV-1 proteins, par-

ticularly in patients infected with non-B viruses.19 The clinical 

consequence of integrase polymorphisms on InSTI response 

and resistance remains to be determined but limited data to 

date has suggested no difference in overall clinical response to 

RAL among B-and non-B HIV-1 infections.18 Studies that have 

evaluated in vitro the susceptibility to RAL and EVG using large 

panels of clinical isolates with multiple HIV-1 subtypes have 

also shown that fold changes in the IC50 to these inhibitors are 

below the biological threshold.26 In addition, HIV-1 group O 

and HIV-2 viruses, which show signifi cant heterogeneity in the 

integrase gene compared to group M viruses display similar 

susceptibility to RAL.24 

The common mechanism of action and conserved bind-

ing mode for InSTIs also has important implications for un-

derstanding cross resistance to the class. In principle, resistance 

mutations can either affect interactions between the metal 

binding pharmacophore and magnesium at the integrase ac-

tive site and/or directly affect interactions between the pendant 

groups in the inhibitor and the enzyme and viral DNA.8 Muta-

tions which engender resistance to InSTIs almost always map 

within the integrase active site near the amino acid residues that 

coordinate the essential magnesium cofactors27,15 rather than 

by affecting interactions with the enzyme viral DNA. Given 

the critical nature of the metal cofactors to integrase function, 

these mutations have a deleterious effect on enzymatic activity 

and viral replication. However, these mutations also engender 

signifi cant cross resistance and although different InSTIs have 

distinct resistance mutations there is signifi cant overlap in re-

sistance to many of these inhibitors.28,29 

Figure 2: Model of InSTI interactions in the active site of 

integrase (based on Grobler, Stillmock et al.14).
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InSTI resistance in vitro and in vivo

The development of resistance to structurally diverse InSTIs 

has now been documented both in vitro and in vivo.11, 28, 30-37 

In vitro, the selection of resistance has been shown to require 

multiple passages of HIV-1 in cell culture, likely as a result of 

both the sequential accumulation of mutations as well as the 

reduced fi tness of these mutants.30,31 While diverse InSTIs 

can select different mutations, nearly all of the amino acid 

residues associated with InSTI resistance localize within the 

integrase active site proximal to the amino acid residues in-

volved in coordinating the metal cofactors consistent with a 

common mechanism of a metal sequestration.8 Importantly, 

resistance to InSTIs does not affect susceptibility to other 

antiretroviral agents, including PIs, NNRTIs, RTIs and the 

various classes of entry inhibitors. 

The selection of resistance to early, prototypic integrase 

inhibitors and clinical development candidates has identifi ed 

a variety of genetic pathways which are defi ned by a single 

characteristic or signature resistance mutation.38,39 In clinical 

trials three primary mutational routes conferring high-level 

resistance to RAL have been observed: 1) N155H in combina-

tion with L74M, E92Q or G163R, 2) Q148H/R/K with E138K 

or G140S/A and 3) Y143R/C mutation plus other muta-

tions.40 For RAL, these general patterns have been confi rmed 

in a variety of cohort studies.41,42 For EVG, patients experi-

encing treatment failure also selected viruses with mutations 

at E92Q, E138K, Q148H/R/K, and N155H as well as other 

mutations.32,33 In vitro, other InSTIs have been shown to select 

different mutations including S153Y.27 While the overall mag-

nitude of the effect of any specifi c individual mutation can 

vary for different InSTIs there is considerable overlap between 

the resistance profi les among InSTIs including all three of the 

current clinical candidates (Figure 3).

For RAL, the N155H mutation confers ~10-fold loss of sen-

sitivity, while the Q148H, Q148K, and Q148R mutations confer 

~20 to 40-fold resistance. Among other single amino acid chang-

es tested, only Y143R conferred > 10-fold resistance to RAL. All 

other substitutions (E92Q, T97A, V151I, G140A, G140S) have 

signifi cantly smaller effects (< 4-fold). Because of the frequency 

with which they have been observed both in clinical trials and in 

cohort studies and the observation that each of these mutations 

individually confers a > 10-fold loss of RAL susceptibility, mu-

tations at Y143, Q148, and N155 are considered “primary mu-

tations;” whereas other mutations which confer limited change 

in susceptibility to RAL and are observed almost exclusively in 

the context of these “primary” substitutions are considered to be 

“secondary” mutations. It should be noted however, that there 

may be additional context effects which contribute to resistance 

and the magnitude of the effect of both single and multiple InSTI 

mutations can vary in clinical isolates.

The evolution of secondary mutations in the context of a 

primary mutation has been shown to increase the level of over-

all resistance to RAL both in the context of site directed mu-

tants as well as in clinical isolates40 (Figure 4). The addition of 

L74M, E92Q, T97A, Y143H, E92Q+T97A, V151I, or G163R to 

N155H increases the fold-change IC50 to RAL from approxi-

mately 10-fold (N155H alone) to as much as more than 100-

fold (range: 20 to > 100-fold). The addition of a G140 mutation 

to Q148R or H augments resistance in a surprisingly specifi c 

manner, G140S/Q148R and G140S/Q148H exhibit ~405-fold 

and ~521-fold resistance, respectively. 

Given the highly conserved nature of the amino acid resi-

dues associated with primary resistance to RAL, it is not sur-

prising that viruses with these mutations exhibit reduced repli-

cation capacity (40 to 60% of wild-type) (Figure 4). However, in 

contrast to the observation that secondary mutations generally 

augment the level of resistance to RAL when combined with 

primary mutations, the effect of secondary mutations on the 

replication capacity viruses of viruses with primary InSTI mu-

tations can vary considerably. Although in most cases, second-

ary mutations have either no effect or further reduce replication 

capacity, in the most striking case the addition of the G140S 

secondary mutation to Q148H compensates for the replication 

capacity defects of Q148H (Figure 4). The latter likely accounts 

Figure 3: Resistance and cross resistance among InSTIs (RAL, 

EVG and GS5172). The effect of RAL resistance associated 

mutations (RAMS) as site directed mutations on antiviral 

activity in vitro.

Figure 4: Effects of resistance mutations on RAL activity and 

viral replication capacity as measured in a single cycle HIV-1 

infectivity assay.
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for the observation that both in clinical studies and in surveil-

lance studies, G140S/Q148H is the most frequent combination 

observed in patients failing RAL with bona fi de resistance. 

In patients with virologic failure and RAL resistance, 

viruses with Q148H mutations are fi tter than those with 

N155H mutations.43 Longitudinal genotyping has shown 

that when RAL resistance evolves with the Q148H muta-

tion, the integrase genotype is stable over time even when 

patients are maintained on RAL. In contrast, N155H vi-

ruses are frequently replaced by viruses with Q148H muta-

tions likely present in the quasispecies early on during fail-

ure. The N155H and Q148H mutations have been shown 

to occur on separate viruses in these patients. The ultimate 

emergence of a dominant Q148H population from such 

mixtures demonstrates that in the presence of RAL, Q148H 

variants have a competitive advantage relative to N155H 

mutants due to the signifi cant difference in replication ca-

pacity between these the two pathways.

Though replication capacity may play a role in pathway 

selection the acquisition of InSTI mutations in RAL fail-

ures is mainly driven by selection for higher levels of resist-

ance. After virologic failure, the overall level of resistance 

to RAL tends to increase with time.41 In many patients, 

the number of integrase resistance mutations increases 

with time correlating with higher-level resistance. In other 

patients, switching from the N155H pathway (generally 

lower-level resistance) to the Q148/K/R variants associated 

with higher-level resistance was observed. The replica-

tion capacity of viruses with Q148R or K plus secondary 

mutation(s) is similar to that of viruses with N155H plus 

secondary mutation(s), therefore switching of the popula-

tion in these patients is best explained by selection pressure 

requiring the higher level of resistance. 

Clinical observations: virologic failure and resistance

Several recent studies have shown that a substantial propor-

tion of virological failures in patients on RAL therapy oc-

cur in the absence of InSTI mutations.41,42,44 Even among a 

cohort of highly treatment-experienced subjects failing RAL 

containing regimen, failure with wild-type integrase was 

relatively common (particularly during early failure); how-

ever, InSTI resistance may emerge in subjects who remain 

on RAL in the context of virologic failure. Several reports 

have described evolution of resistance mutations under 

continued RAL pressure in the absence of complete viral 

suppression.39,41 In some early treatment failures, virus pop-

ulations containing N155H alone were observed to switch 

to virus populations with Q148R or H. Additional studies 

have also documented the dynamics of RAL resistance and 

the evolution of N155N/H to Q148H or N155H to Y143R 

in subjects with incomplete viral suppression.45 The obser-

vation of InSTI resistance evolution during virologic failure 

may suggest that remaining on a RAL regimen could mitigate 

future therapeutic options within the InSTI class. However, 

some studies have suggested RAL may have persistent im-

munologic and virologic benefi t even after the development 

of resistance.41 Given the different overall impact on viral 

replication capacity and distinct evolutionary trajectory 

for each resistance pathway, whether to continue RAL in 

patients who have limited options for complete viral sup-

pression remains a challenging question that may depend as 

much on the specifi c InSTI resistance pathway as on the pa-

tient’s specifi c clinical situation. It is interesting to note that 

in the Coronet study where data were collected from mul-

tiple centers throughout Europe, of the three major path-

ways of RAL resistance, N155H and Y143R/C were observed 

in both B and non-B subtypes, while Q148H/R/K was less 

common in non-B subtypes. Further studies are needed to 

determine how the development of RAL resistance through 

different resistance pathways may be infl uenced by genetic 

context and whether these differences will impact the over-

all ability to recycle current integrase inhibitors or infl uence 

response to next generation agents in the class.

SUMMARY

The first integrase inhibitor, RAL, was introduced in 1997 

and is now approved for both treatment experienced and 

treatment naïve patients. A limited number of additional 

integrase inhibitors is now advancing in clinical develop-

ment, and a wide variety of chemically diverse InSTIs has 

been disclosed in the recent patent and scientific literature. 

These inhibitors exhibit a common mechanism which in-

volves binding to the active site magnesium in the inte-

grase DNA complex. Owing to the common manner in 

which InSTIs engage the magnesium within the integrase 

active site, overlapping resistance is observed with many 

compounds in this class and there is substantial cross-re-

sistance among the first generation agents RAL and EVG 

in vitro and in vivo. In HIV-1 infected patients resistance 

to RAL can evolve through multiple independent genetic 

pathways characterized by signature mutations at one of 

three active site residues (S143, N155 and Q148) and the 

stepwise accumulation of secondary mutations which 

lead to high level resistance. Although RAL and InSTIs in 

general are active across diverse HIV-1 subtypes46 and a 

broad range of retroviruses including HIV-2 and XMRV, 

additional work is needed to understand the development 

of resistance in diverse HIV-1 genetic backgrounds and 

context effects which may infl uence the evolution of InSTI 

resistance. Understanding the underlying mechanisms of 

resistance and the recent co-crystallization of RAL and 

EVG with the Foamy virus intasome will be useful for fu-

ture drug development efforts aimed at identifying novel 

InSTIs that can address the emergence of resistance to 

first generation InSTIs in HIV-1 patients. 
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