Molecular characterization of viruses associated with gastrointestinal infection in HIV-positive patients

ABSTRACT

Background: Diarrhea is a major cause of morbidity and mortality among HIV-infected patients worldwide. **Objective**: We sought to determine the frequency of viral gastrointestinal infections among Brazilian HIV-infected patients with diarrhea. **Methods**: A collection of 90 fecal specimens from HIV-infected individuals with diarrhea, previously tested for the presence of bacteria and parasite was analyzed by polymerase chain reaction and sequence analysis for the presence of enteric viruses such as astrovirus, norovirus, rotavirus groups A, B and C, adenovirus, herpes simplex virus, Epstein-Barr virus, cytomegalovirus, and human bocavirus. **Results**: Twenty patients (22.2%; n = 90) were infected with parasites (11 single infections and nine coinfected with virus). Enteropathogenic bacteria were not found. Virus infections were detected in 28.9% (26/90) of the specimens. Cytomegalovirus was the most common virus detected (24.4%; 22/90). Coinfections with viruses and/or parasite were observed in 10 (11.1%) samples. **Conclusion**: Gastrointestinal virus infections were more frequent than parasitic or bacterial infections in this patient population.

Keywords: HIV infection; gastrointestinal disorders; cytomegalovirus; human bocavirus. [*Braz J Infect Dis 2010;14(6):549-552*]©Elsevier Editora Ltda. Este é um artigo Open Access sob a licença de CC BY-NC-ND

INTRODUCTION

Gastrointestinal (GI) disorders are among the most common and debilitating conditions that affect individuals with AIDS/HIV1 and diarrhea is a major cause of morbidity and mortality worldwide.² Although the introduction of HAART (Highly Active Antiretroviral Therapy) had reduced the prevalence of GI infections,3 opportunistic viruses, parasites and bacteria pathogens can still be associated with GI dysfunctions in patients infected with HIV. Viral enteritis is an important GI manifestation among HIV-infected patients. Several viruses have been implicated of producing enteric disorders in those patients such as cytomegalovirus (CMV), herpes simplex virus (HSV), adenovirus (AdV), norovirus (NoV), astrovirus (AstV) and rotavirus (RV).^{2,4-7} However, except for CMV, which is an established etiological agent of gastrointestinal disease in patients with HIV the role of other viruses remains unclear. We sought to determine the frequency of viral gastrointestinal infections among Brazilian HIV-infected patients with diarrhea.

A collection of 90 fecal specimens from HIV-infected individuals with diarrhea, between 11 and 71 years of age, obtained from August 2006 to December 2007 was screened by polymerase chain reaction (PCR) for the presence of viruses. Of these, 58 (64.4%) were collected from hospitalized patients and 32 (35.6%) from non-hospitalized patients. All patients were on antiretroviral therapy; nevertheless, no information regarding time on HAART and viral load were obtained. Only one fecal specimen was available per patient. Diarrhea was defined as the occurrence of three or more daily episodes of loose stool. The age distribution of the subjects was as follows: five (5.5%) were < 15 years of age; 16 (17.8%) were between 15-30 years; 52 (57.8%) were between 30-50 years; and 17 (18.9%) > 50 years. Relevant clinical information was collected by means of a standardized questionnaire, including hospitalization status, age, sex, and clinical symptoms. The specimens were collected at a University Hospital in the city of Rio de Janeiro, Brazil. The specimens were previously tested, as part of the hospital

Authors

Raquel C Silva¹ Fabrício J Benati¹ Giselle PA Pena¹ Norma Santos¹

¹Department of Virology Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.

Submitted on: 03/08/2010 Approved on: 09/28/2010

Correspondence to:

Norma Santos Departamento de Virologia Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Cidade Universitária, CCS - Bl. I, Ilha do Fundão Rio de Janeiro - RL 21.941-590, Brazil Phone: 55 21 2560-8344 extension 165 Fax: 55 21 2560-8028 E-mail: nsantos@micro. ufrj.br

Financial Support: CNPq, CAPES, FAPERJ

We declare no conflict of interest.

routine procedures, for parasites using Lutz, Baermann-Moraes methods and modified Ziehl-Neelsen stain for detection of coccidia, and by culture isolation and automated VITEK identification method for bacteria. The study protocol was approved by the Ethics Committee of the *Hospital Universitário Clementino Fraga Filho* of the *Federal University of Rio de Janeiro*, Rio de Janeiro, Brazil.

Stool suspensions were prepared as 10% (wt/vol) in phosphate-buffered saline (pH 7.2), clarified by centrifugation at 2,500 x g for 5 min. Nucleic acid was extracted from 200 µL of the sample by using Wizard® Genomic DNA Purification KIT (Promega, Madison, WI, USA) or RNAgents® kit (Promega) according to the manufacturer's instructions. The extracted nucleic acid was stored at -700°C prior to PCR assay. Specimens were tested by conventional PCR assays, as previously described, for the presence of AstV;8 NoV;9 RV group A, B and C;10-12 AdV;13 HSV, Epstein-Barr virus (EBV), CMV;14 and human bocavirus (HBoV).¹⁵ PCR products were detected by agarose gel electrophoresis and staining with ethidium bromide. To confirm the specificity of the PCR products, the amplified DNAs of 15 CMV positive samples and all HSV, AdV, and HBoV positive samples were purified using the Wizard SV gel and PCR Clean-Up system kit (Promega), and the sequences determined using the BigDye® Terminator Cycle Sequencing Kit and the ABI PRISM® 3100 automated DNA sequencer (Applied Biosystems, Foster City, CA, USA). DNA sequences were edited using the software Chromas (Technelysium Pty Ltd, Australia) and compared to sequences available in the GenBankO (www.ncbi.nlm.nih. gov) using the BLAST tool (www.ncbi.nlm.gov/BLAST).

A total of 26 (28.9%, n = 90) samples were positive for viral pathogens. Fourteen (15.6%) were single infection with CMV and 2 (2.2%) with HSV. Coinfections with other viruses and/or parasites were observed in 10 (11.1%) samples. AdV and HBoV were only detected as mixed infections (Table 1). The specificity of the PCR assays was demonstrated by sequencing the amplified products, which confirmed the PCR results. EBV and RNA viruses such as RV, NoV and AstV were not detected. Twenty patients (22.2%) were infected with parasites (data not shown): 11 single infections and nine coinfected with virus. Enteropathogenic bacteria were not found. Age of the virus infected patients ranged from 16 to 59 years. Gender distribution was 16 (61.5%) female and 10 (38.5%) male. Among the positive patients for viral infection, 18 (69.2%) were hospitalized at the time of sample collection.

Although we were unable to obtain detailed information on the patients, such as time on HAART and viral load, information on the TCD4⁺/TCD8⁺ ratio was available for 51 out of 90 patients. Only four patients presented a TCD4⁺/ TCD8⁺ ratio \geq 1; two of them were positive for CMV infection. The remaining 47 patients presented a TCD4⁺/TCD8⁺ ratio < 1, and 23 of these were negative for all pathogens tested and six were positive for parasites only (Table 1). Generally, HIV-infected patients develop GI opportunistic infections when the TCD4⁺ cells count is low inverting the TCD4⁺/TCD8⁺ ratio to < 1.^{1,16} In this study, 16 (61.5%; n = 26) positive samples for viral infection came from individuals with TCD4⁺/TCD8⁺ ratio < 1; 11 were only positive for viruses (nine CMV, one HSV-2, one CMV + AdV); five were a mixture of virus and a parasite (Table 1).

Since the introduction of HAART, there was a reduction in the incidence of many opportunistic GI disorders among HIV/AIDS patients.^{4,5} Yet, diarrhea remains a major cause of morbidity and mortality in this patient population.^{1,2} CMV is the most common opportunistic agent leading to diarrhea among HIV-infected patients.^{1,2,17} We found that 22 out of the 26 virus-positive patients were infected with CMV; 11 single infections; two coinfections with AdV or HSV-2; and five coinfections with parasites.

HSV infections are frequent among HIV-patients.^{2,18} Intestinal HSV infection in AIDS patients usually presents with abdominal pain, tenesmus and bloody or non-bloody rectal discharge; high volume diarrhea rarely occurs.⁴ We found two patients infected with HSV (1 HSV-1 and 1 HSV-2). Both patients presented diarrhea at the time of stool collection.

For some authors AdV is the second most frequent virus associated with diarrhea among HIV-positive patients.¹⁹ We only found AdV as coinfection with CMV and/ or parasite.

HBoV has been described as a respiratory pathogen. Yet, increasingly, HBoV has become recognized as a possible putative agent of acute gastroenteritis.²⁰ Both patients infected with HBoV were coinfected with the parasites Isospora beli or Strongyloides stercoralis, and one of the patients was also infected with CMV (Table 1). Despite the fact that both patients were coinfected with other pathogens associated with diarrheal illness in HIV-patients the role of HBoV as an enteric pathogen in these cases could not be complete ruled out. It is still possible that the presence of HBoV could aggravate the illness. A semi-quantitative PCR measure of HBoV in stool specimens was performed using dilution series of the extracted DNA from stools. We were able to detect DNA until the 10-3 and 10-5 dilution respectively in the two samples. High titers of DNA in the specimens suggest that the virus replicated in the gut. Moreover, at the time of stool collection, both patients were hospitalized in a critical state of immunosuppression which favors opportunistic infections.

In conclusion, gastrointestinal infections (viral and/ or parasitic) were detected in 41.1% (37/90) of the samples, although all patients enrolled in the study were on HAART therapy. Viral infections were more frequent parasitic or bacterial infections among HIV-infected patients with diarrhea than.

Patient	Age (years)	Gender	Status	Virus detected	Parasite detected	TCD4 ⁺ /TCD8 ⁺ ratio
RC02	58	Female	Hospitalized	CMV	Negative	8.0
RC10	49	Female	Hospitalized	AdV	Isospora beli and Strongyloides stercoralis	ND1
RC11	52	Male	Non-hospitalized	CMV	Complex Entamoeba histolytica / E. dispar	0.9
RC25	37	Male	Hospitalized	CMV	Negative	0.1
RC30	30	Female	Hospitalized	CMV	Negative	ND
RC33	40	Male	Non-hospitalized	CMV	Negative	0.3
RC34	41	Male	Non-hospitalized	CMV	Negative	0.5
RC36	35	Female	Hospitalized	CMV	Isospora beli	0.3
RC37	51	Female	Non-hospitalized	CMV	Negative	2.0
RC39	43	Female	Hospitalized	CMV	Negative	0.1
RC41	59	Female	Non-hospitalized	CMV	Negative	0.3
RC43	16	Female	Hospitalized	CMV	Negative	0.2
RC44	43	Male	Hospitalized	CMV + AdV	Negative	0.0
RC46	34	Female	Hospitalized	CMV	Giardia lamblia	0.5
RC49	41	Male	Hospitalized	CMV	Enterobis vermicularis	0.1
RC63	38	Female	Non-hospitalized	CMV	Negative	0.0
RC64	32	Male	Hospitalized	CMV + AdV	Giardia lamblia	ND
RC65	29	Female	Hospitalized	CMV	Negative	ND
RC66	45	Female	Hospitalized	CMV	Negative	ND
RC70	29	Female	Non-hospitalized	CMV	Negative	0.4
RC86	57	Female	Hospitalized	HBoV	Isospora beli	ND
RC102	44	Male	Non-hospitalized	HSV-2	Negative	0.46
RC114	32	Male	Hospitalized	HSV-1	Negative	ND
RC124	34	Male	Hospitalized	CMV	Negative	0.2
RC138	37	Female	Hospitalized	CMV + HBoV	Strongyloides stercoralis	0.1
RC145	36	Female	Hospitalized	CMV	Isospora beli	ND

Tabla	1	Characteristic	of	+ba	mationto	infortad	with	virugge
Iuble	1.	Characteristic	U	ine	putients	injecteu	WILLI	viruses

¹ND, not done.

ACKNOWLEDGMENTS

We thank Soluza dos Santos Gonçalves for the technical assistance.

This study was supported in part by *Conselho Nacional de Desenvolvimento Científico e Tecnológico* (CNPq), *Coordenação de Aperfeiçoamento de Pessoal de Nível Superior* (CAPES) and *Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro* (FAPERJ), Brazil.

The authors of this work have no financial or personal relationship with other people or organization that could inappropriately influence their work during the submission process.

This manuscript represents a portion of a thesis submitted by R.C.S. to the *Universidade Federal do Rio de Janeiro*, Brazil, as a partial fulfillment of the requirements for a Master of Science degree.

Ethical approval

The study protocol was approved by the Ethics Committee of the *Hospital Universitário Clementino Fraga Filho of the Universidade Federal do Rio de Janeiro*, Rio de Janeiro, Brazil, and is in accordance with the Brazilian Ministry of Health Regulation 196/96.

REFERENCES

- 1. Al Anazi AR. Gastrointestinal opportunistic infections in human immunodeficiency virus disease. Saudi J Gastroenterol 2009;15: 95-9.
- Thom K, Forrest G. Gastrointestinal infections in immunocompromised hosts. Curr Opin Gastroenterol 2006; 22:18-23.
- Mönkemuller KE, Call SA, Lazenby AJ, Wilcox CM. Declining prevalence of opportunistic gastrointestinal disease in the era of combination antiretroviral therapy. Am J Gastroenterol2000;95: 457-62.
- Chui DW, Owen RL. AIDS and the gut. J Gastroenterol Hepatol 1994;9: 291-303.
- 5. Gallimore CI, Taylor C, Gennery AR *et al*. Use of a heminested reverse transcriptase PCR assay for detection of astrovirus in environmental swabs from an outbreak of gastroenteritis in a pediatric primary immunodeficiency unit. J Clin Microbiol 2006;43: 3890-4.

- Morillo SG, Luchs A, Cilli A *et al.* Rotavirus genotype G4P[8] and enteric adenovirus in HIV-positive patients with and without diarrhea in São Paulo state, Brazil. Trans R Soc Trop Med Hyg 2009; doi:10.1016/j.trstmh.2009.07.023.
- Gonçalves ACM, Gabbay YB, Mascarenhas JD *et al.* Calicivirus and Giardia lamblia are associated with diarrhea in human immunodeficiency virus-seropositive patients from southeast Brazil. Am J Trop Med Hyg 2009;81: 463-6.
- Noel J, Lee TW, Kurtz JB, Glass RI. Typing of human astroviruses from clinical isolates by immunoassay and nucleotide sequencing. J Clin Microbiol 1995;33: 797-801.
- 9. Vinjé J, Hamdjaja R, Sobsey M. Development and application of a capsid VP1 (region D) based reverse transcription PCR assy for genotyping of genogroup I and II noroviruses. J Virol Meth 2004;116: 109-17.
- Gouvea V, Allen JR, Glass RI *et al.* Detection of Group B and C Rotaviruses by Polymerase Chain Reaction. J Clin Micbobiol 1991;29: 519-23.
- 11. Iturriza-Gomara M, Wong C, Blome S *et al.* Rotavirus subgroup characterization by restriction endonuclease digestion of a cDNA fragmente of the VP6. J Virol Meth2002;105: 99-103.
- 12. Santos N, Clark HF, Hoshino Y, Gouvea V. Relationship among serotype G3P5A rotavirus strains isolated from different host species. Mol Cell Probes 1998;12: 379–86.
- 13. Allard A, Albinsson B, Wadell G. Rapid typing of adenoviruses by a general PCR combined with restriction endonuclease analysis. J Clin Microbiol 2001;39: 498-505.
- 14. Tafreshi NK, Sadeghizadeha M, Amini-Bavil-Olyaeeb S *et al.* Development of a multiplex nested consensus PCR for detection and identification of major human herpesviruses in CNS infections. J Clin Virol 2005;32: 318–24.
- 15. Sloots TP, Whiley DM, Lambert SB, Nissen MD. Emerging respiratory agents: new viruses for old diseases? J Clin Virol 2008;42: 233-43.
- Lew EA, Poles MA, Dieterich DT. Diarrheal diseases associated with HIV infection. Gastroenterol Clin North Am 1997;26: 259–90.
- 17. Cohen J. Infectious diarrhea in human immunodeficiency virus. Gastroenterol Clin North Am 2001;30:637-64.
- Griffin E, Krantz E, Selke S *et al.* Oral mucosal reactivation rates of herpesviruses among HIV-1 seropositive persons. J Med Virol 2008;80: 1153-9.
- Treviño M, Prieto E, Peñalver D *et al*. Diarrea por adenovirus y astrovirus en pacientes inmunodeficientes hospitalizados. Enferm Infecc Microbiol Clin 2001;19: 7-10.
- 20. Albuquerque MCM, Rocha LN, Benati FJ *et al.* Human bocavirus infection in children with gastroenteritis, Brazil. Emerg Infect Dis 2007;13: 1756-8.