was read the article
array:23 [ "pii" => "S1413867023000041" "issn" => "14138670" "doi" => "10.1016/j.bjid.2023.102743" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "102743" "copyright" => "Sociedade Brasileira de Infectologia" "copyrightAnyo" => "2023" "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Braz J Infect Dis. 2023;27:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S1413867022004305" "issn" => "14138670" "doi" => "10.1016/j.bjid.2022.102737" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "102737" "copyright" => "Sociedade Brasileira de Infectologia" "documento" => "article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Braz J Infect Dis. 2023;27:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Case Report</span>" "titulo" => "Systemic infection caused by the methicillin-resistant <span class="elsevierStyleItalic">Staphylococcus aureus</span> USA300-LV lineage in a Brazilian child previously colonized" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1438 "Ancho" => 1667 "Tamanyo" => 216756 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Computed tomography (CT) of the abdomen.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Carolina de Oliveira Whitaker, Raiane Cardoso Chamon, Tamara Lopes Rocha de Oliveira, Simone Aranha Nouér, Kátia Regina Netto dos Santos" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Carolina de Oliveira" "apellidos" => "Whitaker" ] 1 => array:2 [ "nombre" => "Raiane Cardoso" "apellidos" => "Chamon" ] 2 => array:2 [ "nombre" => "Tamara Lopes Rocha" "apellidos" => "de Oliveira" ] 3 => array:2 [ "nombre" => "Simone Aranha" "apellidos" => "Nouér" ] 4 => array:2 [ "nombre" => "Kátia Regina Netto" "apellidos" => "dos Santos" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1413867022004305?idApp=UINPBA00003Y" "url" => "/14138670/0000002700000002/v3_202304071918/S1413867022004305/v3_202304071918/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S1413867023000053" "issn" => "14138670" "doi" => "10.1016/j.bjid.2023.102745" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "102745" "copyright" => "Sociedade Brasileira de Infectologia" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Braz J Infect Dis. 2023;27:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Safety of levofloxacin as an antibiotic prophylaxis in the induction phase of children newly diagnosed with acute lymphoblastic leukemia: an interim analysis of a randomized, open-label trial in Brazil" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Mauro Cesar Dufrayer, Ciliana Rechenmacher, Clarice Franco Meneses, Yasmine Massaro Carneiro Monteiro, Fabianne Altruda de Moraes Costa Carlesse, Fabrizio Motta, Liane Esteves Daudt, Mariana Bohns Michalowski" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Mauro Cesar" "apellidos" => "Dufrayer" ] 1 => array:2 [ "nombre" => "Ciliana" "apellidos" => "Rechenmacher" ] 2 => array:2 [ "nombre" => "Clarice Franco" "apellidos" => "Meneses" ] 3 => array:2 [ "nombre" => "Yasmine Massaro Carneiro" "apellidos" => "Monteiro" ] 4 => array:2 [ "nombre" => "Fabianne Altruda de Moraes Costa" "apellidos" => "Carlesse" ] 5 => array:2 [ "nombre" => "Fabrizio" "apellidos" => "Motta" ] 6 => array:2 [ "nombre" => "Liane Esteves" "apellidos" => "Daudt" ] 7 => array:2 [ "nombre" => "Mariana Bohns" "apellidos" => "Michalowski" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1413867023000053?idApp=UINPBA00003Y" "url" => "/14138670/0000002700000002/v3_202304071918/S1413867023000053/v3_202304071918/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review Article</span>" "titulo" => "Epoxy-α-lapachone (2,2-Dimethyl-3,4-dihydro-spiro[2H-naphtho[2,3-b]pyran-10,2′-oxirane]-5(10H)-one): a promising molecule to control infections caused by protozoan parasites" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Juliana Figueiredo Peixoto, Adriane da Silva Oliveira, Luiz Filipe Gonçalves - Oliveira, Franklin Souza - Silva, Carlos Roberto Alves" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Juliana Figueiredo" "apellidos" => "Peixoto" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 1 => array:3 [ "nombre" => "Adriane da Silva" "apellidos" => "Oliveira" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 2 => array:3 [ "nombre" => "Luiz Filipe" "apellidos" => "Gonçalves - Oliveira" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 3 => array:3 [ "nombre" => "Franklin" "apellidos" => "Souza - Silva" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0003" ] ] ] 4 => array:4 [ "nombre" => "Carlos Roberto" "apellidos" => "Alves" "email" => array:1 [ 0 => "calves@ioc.fiocruz.br" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0001" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil" "etiqueta" => "a" "identificador" => "aff0001" ] 1 => array:3 [ "entidad" => "Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brazil" "etiqueta" => "b" "identificador" => "aff0002" ] 2 => array:3 [ "entidad" => "Universidade Iguaçu, Nova Iguaçu, RJ, Brazil" "etiqueta" => "c" "identificador" => "aff0003" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0001" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0002" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 916 "Ancho" => 2000 "Tamanyo" => 136105 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara002" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Predicted epoxy-α-lapachone regions interactions with amino acid residues of the active site of trypanosomatid proteases.</span> Epoxy-α-lapachone (2,3-Dihydro-3,3-dimethylspiro[1H-4-oxanthracene-5,2′-oxiran]−10(5H)-one) is formed by an aromatic ring (A), a central six-membered ring (B) and a ring with two methyl groups (C). The chiral center being the C12 atom, which is also part of the three-membered epoxide ring.<a class="elsevierStyleCrossRef" href="#bib0044"><span class="elsevierStyleSup">44</span></a> CID: 12,000,280; molecular formula:C<span class="elsevierStyleInf">16</span>H<span class="elsevierStyleInf">16</span>O<span class="elsevierStyleInf">3</span> and molecular mass: 256.3 g/mol. Epoxy-α-lapachone regions interactions with amino acid residues of cysteine-proteinase (green) of <span class="elsevierStyleItalic">Trypanosoma cruzi</span><a class="elsevierStyleCrossRef" href="#bib0048"><span class="elsevierStyleSup">48</span></a> and serine-proteinase (orange) of <span class="elsevierStyleItalic">Leishmania</span> (<span class="elsevierStyleItalic">Leishmania</span>) <span class="elsevierStyleItalic">amazonensis</span>.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a></p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0003">Introduction</span><span id="sec0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0004">Neglected diseases general considerations</span><p id="para0001" class="elsevierStylePara elsevierViewall">Neglected diseases (NDs) affect millions of people worldwide, especially in developing nations, which have little attention from their governments and pharmaceutical companies. The World Health Organization (WHO) has classified 20 of these diseases as neglected tropical diseases (NTDs), including several infections caused by viruses, bacteria, fungi, and protozoa.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a></p><p id="para0002" class="elsevierStylePara elsevierViewall">NDs mainly affect populations living in conditions of poverty in tropical and subtropical climates, with no adequate sanitation, precarious housing conditions and in contact with vectors.<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> These diseases cause high morbidity and mortality rates, resulting in physical, economic and social impacts throughout life.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a></p><p id="para0003" class="elsevierStylePara elsevierViewall">Pharmaceutical companies have little interest in financing programs against these diseases, due to the low financial return they receive from these poor populations. However, programs and action plans for the control, elimination and eradication of these diseases have been developed, such as the WHO Sustainable Development Goals program, which aims to end tuberculosis, malaria and NTDs epidemics by 2030. An initiative to eliminate or eradicate 10 of these diseases by 2020 was presented in the WHO Roadmap on neglected tropical diseases and the 2012 London Declaration on Neglected Tropical Diseases. According to WHO, to achieve the objectives of these programs, public investments for the control of NTDs in the years from 2015 to 2020, excluding vector control, totaled an average of $750 million per year. To maintain progress from 2020 to 2030, an additional $460 million per year in investments are needed. Total investments, excluding donated drugs, for the 2015–2030 period total $34 billion.<a class="elsevierStyleCrossRef" href="#bib0004"><span class="elsevierStyleSup">4</span></a></p><p id="para0004" class="elsevierStylePara elsevierViewall">One focusof these control programs is the development of new therapeutic agents. However, the small advance in therapies and the high prevalence of NDs are still disproportionate. Despite the development of many compounds, few of them are directed to NDs.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">5</span></a> In this context, NDs caused by parasitic protozoa stand out in studies for the development of new therapeutic compounds. Although these diseases represent serious public health challenges, only a limited panel of drugs is commercially available for clinical applications.</p></span><span id="sec0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0005">The critical situation on Malaria, Chagas Disease and Leishmaniasis treatment</span><p id="para0005" class="elsevierStylePara elsevierViewall">The WHO warns of the increasing number of malaria cases in more than 80 countries and areas with continuous transmission of the disease.<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a> The treatment of malaria, a disease mainly caused by four human <span class="elsevierStyleItalic">Plasmodium</span> spp. (<span class="elsevierStyleItalic">P. falciparum, P. vivax, P. malariae</span> and <span class="elsevierStyleItalic">P. ovale</span>), has been progressively updated to the use of a combination of drugs. In this case, artemisinin-based combination therapy (ACT) is applied for infections caused by <span class="elsevierStyleItalic">P. falciparum</span> or by chloroquine-resistant strains of <span class="elsevierStyleItalic">P. vivax</span>, or by the use of chloroquine, supplemented with primaquine, for the treatment of chloroquine susceptible <span class="elsevierStyleItalic">P. vivax</span> infections.<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a></p><p id="para0006" class="elsevierStylePara elsevierViewall">Chagas disease,caused by the protozoan <span class="elsevierStyleItalic">Trypanosoma cruzi</span>, is endemic in Latin American countries, affecting more than seven million people and causing more than 10,000 deaths per year.<a class="elsevierStyleCrossRef" href="#bib0007"><span class="elsevierStyleSup">7</span></a> This infection causes irreversible and chronic damage to the heart, digestive system, and nervous system, with risk factors related to the low socioeconomic status of the affected population. Only two drugs have been approved for the treatment of Chagas disease during the 60s and 70s: nifurtimox, 5-nitrofuran, (Lampit™/Bayer) and benznidazole, a nitroimidazole (Lafepe and Abarax/Elea).<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a></p><p id="para0007" class="elsevierStylePara elsevierViewall">Leishmaniasesare diseases caused by more than 20 species of protozoa belonging to the Leishmania genus.<a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">10</span></a> These parasites can affect the lining tissues, such as skin and mucous membranes (Cutaneous Leishmaniasis - CL), and some species can infect internal tissues and organs, such as liver, spleen, and bone marrow, as well as other organs such as kidney and lung, causing visceral leishmaniasis (VL).<a class="elsevierStyleCrossRef" href="#bib0011"><span class="elsevierStyleSup">11</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a> The disease is endemic in approximately 98 countries, especially in Latin America, East Africa and Southeast Asia, with 350 million people under risk of contracting the infection. The estimated incidence rate is 1.5 million new cases per year.<a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a> Since 1940s until now, pentavalent antimonials (meglumine antimoniate and sodium stibogluconate) are considered the main drugs used to treat all clinical forms of leishmaniasis, especially in the New World.</p><p id="para0008" class="elsevierStylePara elsevierViewall">These three groups of parasitic infections share a serious problem, the low availability of alternative treatments. Current treatment for these diseases is questionable and requires continuous monitoring. In addition, only a small portion of the infected population has access to these therapies. Futhermore, clinically approved drugs are expensive and toxic, need long-term administration and can induce the arise ofresistant strains.</p><p id="para0009" class="elsevierStylePara elsevierViewall">In general, the treatment of these diseases showed little progress in the recent decades. For Chagas disease treatment, the use of benznidazole in children aged 2 to 12 years was approved by the US Food and Drug Administration (FDA) only in 2017.<a class="elsevierStyleCrossRef" href="#bib0013"><span class="elsevierStyleSup">13</span></a> In 2014, the repositioning of miltefosine, initially developed for the treatment of breast cancer, was approved for the treatment of leishmaniasis, being currently the only oral medication available for this group of diseases.<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> The use of tafenoquine for the radical cure of malaria caused by <span class="elsevierStyleItalic">P. vivax</span> was approved by the FDA in July 2018, being the first global drug for this indication in 60 years. In August 2018 its use for malaria prophylaxis was also approved.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">5</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">15</span></a> In 2020, FDA approved the intravenous use of artesunate in U.S. for the treatment of severe malaria followed by a full course of oral antimalarial treatments.<a class="elsevierStyleCrossRef" href="#bib0016"><span class="elsevierStyleSup">16</span></a> In addition to these few important advances, the adverse effects and high toxicity that these drugs currently used present, make the need for the search for new therapies for these diseases even greater.</p></span><span id="sec0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0006">Insights into naphthoquinones as potential drugs to treat infection <span class="elsevierStyleItalic">Plasmodium spp., Trypanosoma cruzi</span> and <span class="elsevierStyleItalic">Leishmania spp.</span></span><p id="para0010" class="elsevierStylePara elsevierViewall">Different strategies have been used for the search of new drugs for the treatment of these diseases, among them the research and use of natural products and their derivatives, mainly secondary metabolites.<a class="elsevierStyleCrossRef" href="#bib0017"><span class="elsevierStyleSup">17</span></a> Natural products play an important role as source of compounds for new therapies. In this context, quinones are molecules of great interest in medicinal chemistry due to its spectrum of biological activity and chemical properties.<a class="elsevierStyleCrossRef" href="#bib0018"><span class="elsevierStyleSup">18</span></a> Quinones are organic substances derived from natural aromatic metabolites found in several plant families, as well as in fungi, algae and bacteria. This group of compounds includes benzoquinones, anthraquinones and naphthoquinones.<a class="elsevierStyleCrossRef" href="#bib0019"><span class="elsevierStyleSup">19</span></a></p><p id="para0011" class="elsevierStylePara elsevierViewall">Among the natural naphthoquinones, lapachol (2-hydroxy-3-(3′-methyl-2-butenyl)−1,4-naphthoquinone) stands out. This molecule is known since 1882 and identified since then as a constituent of several plant species of the families Bignoniaceae, Verbenaceae and Proteaceae.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">20</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0021"><span class="elsevierStyleSup">21</span></a> The greatest occurrence is in the heartwood of the trunk of species of the genus Tabebuia, belonging to the family Bignoniaceae, popularly known as <span class="elsevierStyleItalic">ipes</span>.<a class="elsevierStyleCrossRef" href="#bib0022"><span class="elsevierStyleSup">22</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0023"><span class="elsevierStyleSup">23</span></a> Lapachol has been tested in the past as an alternative in the treatment of solid tumors due to its anti-cancer properties.<a class="elsevierStyleCrossRef" href="#bib0024"><span class="elsevierStyleSup">24</span></a> A range of biological effects of lapachol have been established which include analgesic, antiviral, antioxidant, antimicrobial, anti-inflammatory, fungicide and antiparasitic activities.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">25</span></a> Due to low toxicity, lapachol has become a good prototype for the development of synthetic naphthoquinones with interesting biological effects, often with equally low toxicity.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">25</span></a></p><p id="para0012" class="elsevierStylePara elsevierViewall">The antiparasitic activity of lapachol and other naphthoquinones has already been demonstrated, as previously reviewed.<a class="elsevierStyleCrossRef" href="#bib0026"><span class="elsevierStyleSup">26</span></a> In addition, other natural naphthoquinones are also notable for to their antiparasitic properties among them: α-lapachone, β-lapachone, lawsone, juglone and plumbagin.<a class="elsevierStyleCrossRef" href="#bib0027"><span class="elsevierStyleSup">27</span></a> Several other studies have demonstrated the activity of these naphthoquinones against <span class="elsevierStyleItalic">Leishmania</span> spp.,<a class="elsevierStyleCrossRef" href="#bib0028"><span class="elsevierStyleSup">28</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0029"><span class="elsevierStyleSup">29</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">30</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0031"><span class="elsevierStyleSup">31</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0032"><span class="elsevierStyleSup">32</span></a><span class="elsevierStyleItalic">Plasmodium</span> spp.<a class="elsevierStyleCrossRef" href="#bib0033"><span class="elsevierStyleSup">33</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0034"><span class="elsevierStyleSup">34</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">35</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0036"><span class="elsevierStyleSup">36</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0037"><span class="elsevierStyleSup">37</span></a> and <span class="elsevierStyleItalic">T. cruzi</span>.<a class="elsevierStyleCrossRef" href="#bib0038"><span class="elsevierStyleSup">38</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0039"><span class="elsevierStyleSup">39</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">40</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0042"><span class="elsevierStyleSup">42</span></a></p><p id="para0013" class="elsevierStylePara elsevierViewall">Supported by ChEMBL Database <span class="elsevierStyleItalic">in vitro</span> results against <span class="elsevierStyleItalic">Leishmania</span> spp., <span class="elsevierStyleItalic">Plasmodium</span> spp. and <span class="elsevierStyleItalic">T. cruzi</span>, six naphthoquinones were selected according to structural similarity, as shown in the plot on anti-parasitic activity (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>). Among these, two compounds are natural sources  (α-lapachone and β-lapachone) and four are synthetic derivatives: 2,2-dimethylspiro[3H-benzo[f][1]benzofuran-9,2′-oxirane]−4-one, 2,2-dimethylspiro[3,4,6,7,8,9-hexahydrobenzo[g]chromene-10,2′-oxirane]−5-one, 2,2-dimethylspiro[3,4-dihydrobenzo[h]chromene-6,2′-oxirane]−5-one and epoxy-α-lapachone. <a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a> shows that α-lapachone, β-lapachone and epoxy-α-lapachone have been the subject of careful studies against these parasites and the number of <span class="elsevierStyleItalic">in vitro</span> studies on the determination of IC<span class="elsevierStyleInf">50</span> values stands out.</p><elsevierMultimedia ident="fig0001"></elsevierMultimedia><elsevierMultimedia ident="fig0002"></elsevierMultimedia><p id="para0014" class="elsevierStylePara elsevierViewall">The toxicity of β-lapachone has led to the study of synthetic and semi-synthetic derivatives which may avoid this disadvantage.<a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> This review examines epoxy-α-lapachone (ELAP) in which an epoxide ring is introduced into the quinoid center of α-lapachone.<a class="elsevierStyleCrossRef" href="#bib0044"><span class="elsevierStyleSup">44</span></a></p></span></span><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0007">Epoxy-α-lapachone</span><span id="sec0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0008">Synthesis and chemical characterization</span><p id="para0015" class="elsevierStylePara elsevierViewall">Epoxy-α-lapachone (2,2-Dimethyl-3,4-dihydro-spiro[2H-naphtho[2,3-b]pyran-10,2′-oxirane]−5(10H)-one), ELAP, molecular weight 256.3 g/mol and molecular formula C<span class="elsevierStyleInf">16</span>H<span class="elsevierStyleInf">16</span>O<span class="elsevierStyleInf">3</span>, synthesized by the reaction of α-lapachone with an ethereal solution of diazomethane, the first spiro-oxirane derived from a <span class="elsevierStyleItalic">p</span>-quinone to be reported.<a class="elsevierStyleCrossRef" href="#bib0044"><span class="elsevierStyleSup">44</span></a> This mechanistic consideration resulted in obtaining ELAP that maintained the parasiticidal activity of its precursor.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">45</span></a></p></span><span id="sec0007" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0009">Antiparasitic activity</span><p id="para0016" class="elsevierStylePara elsevierViewall">ELAP activity was assessed against three protozoan species: <span class="elsevierStyleItalic">Trypanosoma cruzi, Leishmania</span> spp. and <span class="elsevierStyleItalic">Plasmodium falciparum</span>, causative agents of Chagas disease, leishmaniasis and malaria, respectively. The summary of the main results of <span class="elsevierStyleItalic">in vitro</span> ELAP assays is shown in <a class="elsevierStyleCrossRef" href="#tbl0001">Table 1</a>.</p><elsevierMultimedia ident="tbl0001"></elsevierMultimedia><p id="para0017" class="elsevierStylePara elsevierViewall">The effect of ELAP on the viability of intracellular epimastigotes, trypomastigotes and amastigotes of <span class="elsevierStyleItalic">T. cruzi</span> was assessed. ELAP showed high activity against epimastigote forms (Dm28c strain), eliminating all parasites within 72 h (DL<span class="elsevierStyleInf">50</span> < 3.1 μM).<a class="elsevierStyleCrossRef" href="#bib0046"><span class="elsevierStyleSup">46</span></a> The compound showed the highest activity against this parasite form (IC<span class="elsevierStyleInf">50</span> = 1.3 μM) in the series of tested oxiranes.<a class="elsevierStyleCrossRef" href="#bib0047"><span class="elsevierStyleSup">47</span></a> ELAP affected the viability of 100% of epimastigote forms when tested in concentrations of 3.1 μM, 12.5 μM and 50 μM.<a class="elsevierStyleCrossRef" href="#bib0048"><span class="elsevierStyleSup">48</span></a></p><p id="para0018" class="elsevierStylePara elsevierViewall">ELAP showed a lower IC<span class="elsevierStyleInf">50</span> value (IC<span class="elsevierStyleInf">50</span> = 0.05 μM) than epoxymethyl-lawsone (IC<span class="elsevierStyleInf">50</span> = 1.13 μM), an oxirane derived from 2-hydroxy-1,4-naphthoquinone (lawsone) after 72 h of exposure. Both molecules showed lower IC<span class="elsevierStyleInf">50</span> values than benznidazole (IC<span class="elsevierStyleInf">50</span> = 11.5 μM), the drug of choice for the treatment of Chagas disease.<a class="elsevierStyleCrossRef" href="#bib0039"><span class="elsevierStyleSup">39</span></a></p><p id="para0019" class="elsevierStylePara elsevierViewall">Their effects on trypomastigote and intracellular amastigote forms of the Y and Colombian strains of <span class="elsevierStyleItalic">T. cruzi</span>, known for their different infectious profiles, were assessed. This study demonstrated that 75 μM of the compound has affected the viability of both strains: 97% of strain Y and 84% of Colombian strain. ELAP activity against intracellular amastigotes inVERO cells infected was higher (96.4% for strain Y, and 95.0% for Colombian strain) than to the human macrophages infected (85.6% strain Y and 71.9% Colombian strain). Interestingly, results of these assays suggest a preferential <span class="elsevierStyleItalic">in vitro</span> order of ELAP activity against the three <span class="elsevierStyleItalic">T. cruzi</span> forms: epimastigotes > trypomastigotes > intracellular amastigotes.<a class="elsevierStyleCrossRef" href="#bib0049"><span class="elsevierStyleSup">49</span></a></p><p id="para0020" class="elsevierStylePara elsevierViewall">Leishmanicidal activity of ELAP was evaluated against <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">V.</span>) <span class="elsevierStyleItalic">braziliensis</span> and <span class="elsevierStyleItalic">L</span>. (<span class="elsevierStyleItalic">L</span>.) <span class="elsevierStyleItalic">amazonensis</span>, two of the main causative species of CL in the New World. Promastigote assays showed that ELAP was able to significantly decrease the number of promastigotes after 24 h of exposure, compared to the control, indicating a similar IC<span class="elsevierStyleInf">50</span> value (37.0 ± 0.4 μM) for both parasite species. A higher effect of ELAP against these forms in 48 h of exposure indicates that the activity is time- and dose-dependent.<a class="elsevierStyleCrossRef" href="#bib0031"><span class="elsevierStyleSup">31</span></a> The effect of ELAP against intracellular amastigote forms was also investigated and a reduction in the endocytic index values for <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">V.</span>) <span class="elsevierStyleItalic">braziliensis</span> (491.1 ± 40 to 21.0 ± 2) and for <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">amazonensis</span> (290.0 ± 30 to 6.0 ± 0.8) was observed, demonstrating the ability of the compound to cross the macrophage cell membrane and affect the parasite.<a class="elsevierStyleCrossRef" href="#bib0031"><span class="elsevierStyleSup">31</span></a> In addition, it was noted that ELAP is able to induce changes in the mitochondrial membrane potential of the parasite.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a></p><p id="para0021" class="elsevierStylePara elsevierViewall">A study using BALB/c mice infected with <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">amazonensis</span> demonstrated that ELAP (0.44 mM) administered subcutaneously in the dorsal region was able to reduce the size of paw lesions to 18% six weeks after treatment compared to untreated animals group (30.8 ± 2.6 mm<span class="elsevierStyleSup">3</span>) and animals treated with meglumine antimoniate (MA), (28.3 ± 1.5 mm<span class="elsevierStyleSup">3</span>).<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a></p><p id="para0022" class="elsevierStylePara elsevierViewall">ELAP and 17 other compounds derived from quinones were also tested on the 3D7 strain of <span class="elsevierStyleItalic">P. falciparum</span> present in erythrocytes (100 to 0.14 μg / mL). The results indicated that ELAP is the most active compound against this parasite, presenting the lowest IC<span class="elsevierStyleInf">50</span> value (3.71 μM), followed by another oxirane compound derived from a tetrachlorobenzoquinone whose IC<span class="elsevierStyleInf">50</span> value was 3.95 μM.<a class="elsevierStyleCrossRef" href="#bib0037"><span class="elsevierStyleSup">37</span></a></p></span><span id="sec0008" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0010">Combination therapy</span><p id="para0023" class="elsevierStylePara elsevierViewall">Combination therapy has been the basis for the treatment of several infectious diseases, such as malaria, tuberculosis, HIV/AIDS, and its use has gradually been expanded to NTDs, such as leishmaniasis and Chagas disease.<a class="elsevierStyleCrossRef" href="#bib0051"><span class="elsevierStyleSup">51</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0052"><span class="elsevierStyleSup">52</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0053"><span class="elsevierStyleSup">53</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0054"><span class="elsevierStyleSup">54</span></a> This approach has several advantages, such as increased efficacy, reduced dose and treatment time, lower incidence of adverse effects, better patient adherence to treatment, and improved cost-effectiveness. In addition, this approach reduces the possibility of resistant parasite selection.<a class="elsevierStyleCrossRef" href="#bib0051"><span class="elsevierStyleSup">51</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0054"><span class="elsevierStyleSup">54</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">55</span></a></p><p id="para0024" class="elsevierStylePara elsevierViewall">The combination of naphthoquinones and their derivatives with other compounds have been tested in other studies as an alternative to the conventional treatment of leishmaniasis. Among them, atovaquone presented leishmanicidal effects <span class="elsevierStyleItalic">in vivo</span> when combined with pentavalent antimonials on <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">donovani</span> as complement to the conventional treatment of VL.<a class="elsevierStyleCrossRef" href="#bib0056"><span class="elsevierStyleSup">56</span></a> Although <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">infantum</span> promastigotes showed resistance to atovaquone when subjected to strain selection (after the fifth pressure), further studies may confirm that the use of atovaquone in combination with approved drugs may still be an alternative for the treatment.<a class="elsevierStyleCrossRef" href="#bib0057"><span class="elsevierStyleSup">57</span></a> Plumbagin, a naphthoquinone obtained from the roots of <span class="elsevierStyleItalic">Plumbago capensis</span>, was tested in a double combination with acriflavine, saponin or trifluralin, for the treatment of BALB/c mice infected by <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">major</span>. Combination therapy resulted in the total elimination of parasites in the lesions and significantly reduced the parasitic burden on the liver and spleen, compared to monotherapy and untreated controls.<a class="elsevierStyleCrossRef" href="#bib0058"><span class="elsevierStyleSup">58</span></a></p><p id="para0025" class="elsevierStylePara elsevierViewall">Interestingly, ELAP activity was more effective when the treatment was performed in combination with MA compared to monotherapy. The combination of MA/ELAP (3:1) caused a 98% reduction in the <span class="elsevierStyleItalic">in vitro</span> endocytic index of murine peritoneal macrophages infected with <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">amazonensis</span>. The treatment of BALB/c mice infected with the same species resulted in a reduction of 62% of the size lesion of the paw, and decrease of 97% in parasitic load in the paw.<a class="elsevierStyleCrossRef" href="#bib0059"><span class="elsevierStyleSup">59</span></a> These results indicate that the combination of these compounds with pentavalent antimonials may represent a promising approach to the management of CL treatment.</p></span><span id="sec0009" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0011">Toxicity</span><p id="para0026" class="elsevierStylePara elsevierViewall">The added value of toxicity tests during research and development of new drugs, represents a major contribution to the understanding of the dose-response relationship as well as to the extrapolation of data obtained in research with animal models for humans.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">60</span></a> In this way, a set of <span class="elsevierStyleItalic">in vitro</span> and <span class="elsevierStyleItalic">in vivo</span> tests has been conducted to establish the safety range for research on ELAP as a potential drug.</p><p id="para0027" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleItalic">in vitro</span> cytotoxicity of ELAP was assayed on VERO cells (ATCC, CRL-1586), a fibroblast cell line in the kidney of the African green monkey (<span class="elsevierStyleItalic">Cercopithecus aethiops</span>). ELAP was shown to be the least cytotoxic compound (CD<span class="elsevierStyleInf">50</span>> 50 μM) compared to other tested naphthoquinone derivatives.<a class="elsevierStyleCrossRef" href="#bib0046"><span class="elsevierStyleSup">46</span></a> Lower cytotoxicity and high selectivity (CC<span class="elsevierStyleInf">50</span>/IC<span class="elsevierStyleInf">50</span>) were found for ELAP (CC<span class="elsevierStyleInf">50</span>> 50 μM and IC<span class="elsevierStyleInf">50</span> = 1.3 μM) when compared to β-lapachone (CC<span class="elsevierStyleInf">50</span> <3.1 μM and IC<span class="elsevierStyleInf">50</span> = 0.9 μM).<a class="elsevierStyleCrossRef" href="#bib0047"><span class="elsevierStyleSup">47</span></a> ELAP presented no toxicity to bone marrow-derived macrophage lineage, and also to VERO cells as noted in previous studies.<a class="elsevierStyleCrossRef" href="#bib0048"><span class="elsevierStyleSup">48</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0049"><span class="elsevierStyleSup">49</span></a></p><p id="para0028" class="elsevierStylePara elsevierViewall">ELAP was tested on a human fibroblast cell line (MRC-5) and human macrophages. The assays with MRC-5, for 48 h of interaction in the concentrations of 1.56 μg/mL to 100 μg/mL, presented a low IC<span class="elsevierStyleInf">50</span> value on this strain (IC<span class="elsevierStyleInf">50</span>> 100 μM) and a significant selectivity index (IS> 27), when compared to the other compounds tested.<a class="elsevierStyleCrossRef" href="#bib0037"><span class="elsevierStyleSup">37</span></a> Tests over human macrophages from peripheral blood for 24 and 48 h, showed no effects on the viability of this cell type at tested concentrations (25 μM and 75 μM).<a class="elsevierStyleCrossRef" href="#bib0031"><span class="elsevierStyleSup">31</span></a></p><p id="para0029" class="elsevierStylePara elsevierViewall">The effects of ELAP (1.9 μM/kg/day) in the organs of healthy BALB/c mice were also investigated, which allowed to evaluate the nature of the damage that these compounds may cause at high doses. Heart tissue was most affected by ELAP with intense necrosis, degeneration of cardiac fibers and mononuclear infiltrates.<a class="elsevierStyleCrossRef" href="#bib0061"><span class="elsevierStyleSup">61</span></a></p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0012">Mechanism of action on the protozoan parasites</span><p id="para0030" class="elsevierStylePara elsevierViewall">The pharmacological activity of a drug is directly related to its chemical structure, which guides the interaction with the parasite's binding site. It is well known that an important structural feature for the biological activity of α-lapachone is the presence of the C ring as well as the strong influence of the redox center.<a class="elsevierStyleCrossRef" href="#bib0047"><span class="elsevierStyleSup">47</span></a> Through structural changes in the α-lapachone molecule, several compounds were synthesized, including ELAP, by the introduction of the oxirane ring in the quinonoid center.<a class="elsevierStyleCrossRef" href="#bib0047"><span class="elsevierStyleSup">47</span></a></p><p id="para0031" class="elsevierStylePara elsevierViewall">To elucidate the mechanism of action of ELAP, as well as other derivatives, previous data about the activities of its precursors are important. Differently from other quinones, whose mechanism of action is related to the formation of ROS from the redox cycle of the ortho- and para-quinonoid centers, the activity of α-lapachone and its derivatives has not been shown to be involved in the ROS production, especially in the <span class="elsevierStyleItalic">T. cruzi</span>.<a class="elsevierStyleCrossRef" href="#bib0046"><span class="elsevierStyleSup">46</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0062"><span class="elsevierStyleSup">62</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0063"><span class="elsevierStyleSup">63</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0064"><span class="elsevierStyleSup">64</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">65</span></a> It has also been proposed that the trypanocidal activity of these compounds would be due to another mechanism, possibly related to the presence of the oxirane ring of ELAP, since this modification resulted in increased cytotoxic effect on the parasite.<a class="elsevierStyleCrossRef" href="#bib0046"><span class="elsevierStyleSup">46</span></a></p><p id="para0032" class="elsevierStylePara elsevierViewall">A possible mechanism for ELAP action is an inhibition of serine proteases of the parasite, observed in epimastigote forms of <span class="elsevierStyleItalic">T. cruzi</span> and in both promastigotes and amastigotes of <span class="elsevierStyleItalic">L. (L.) amazonensis</span>.<a class="elsevierStyleCrossRef" href="#bib0048"><span class="elsevierStyleSup">48</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a> Furthermore, in silico studies indicate that ELAP is able to bind oligopeptidase B (OPB) from <span class="elsevierStyleItalic">L. (L.) amazonensis</span>.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a></p><p id="para0033" class="elsevierStylePara elsevierViewall">Although the mode of action of ELAP on biochemical pathways of <span class="elsevierStyleItalic">P. falciparum</span> is still unknown, it is possible to hypothesize such actions based on the findings in <span class="elsevierStyleItalic">T. cruzi, L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">amazonensis</span> and <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">V.</span>) <span class="elsevierStyleItalic">braziliensis</span>. There is evidence that ELAP acts as a serine protease inhibitor of <span class="elsevierStyleItalic">P. falciparum</span>,<a class="elsevierStyleCrossRef" href="#bib0037"><span class="elsevierStyleSup">37</span></a> but nothing has been described about the effect of the compound on the multiplication or any other event in the parasite's biological cycle. However, it is plausible that its action interferes with several points in the parasite's physiology, since proteolytic activity, including the numerous isoforms and homologues of serine proteases, is essential for the survival of organisms.<a class="elsevierStyleCrossRef" href="#bib0066"><span class="elsevierStyleSup">66</span></a></p><p id="para0034" class="elsevierStylePara elsevierViewall">In addition to these biological actions described for ELAP, it is also possible to conjecture its role in the modulation of cells or components of the immune system, as discussed based on the reactive potential of its molecular structure.<a class="elsevierStyleCrossRef" href="#bib0059"><span class="elsevierStyleSup">59</span></a> Thus, it is possible that ELAP acts directly over the parasite cell or indirectly by the modulation of mediator's expression of the immune response, as proposed for α-lapachone and β-lapachone. For both isomers, properties of blocking the expression of pro-inflammatory cytokines such as interleukin IL-1b, IL-6 and tumor necrosis factor have been described.<a class="elsevierStyleCrossRef" href="#bib0067"><span class="elsevierStyleSup">67</span></a></p><p id="para0035" class="elsevierStylePara elsevierViewall">A recent in silico study demonstrated the potential of ELAP to act on different enzymes from <span class="elsevierStyleItalic">Leishmania</span> spp. based on previous results in the literature related to the activity of other naphthoquinones in different parasites: β-lapachone in <span class="elsevierStyleItalic">Coccidioides posadasii</span>; 2-phenoxy-1,4-naphthoquinone in <span class="elsevierStyleItalic">T. brucei</span>; Buparvaquone in <span class="elsevierStyleItalic">L.</span> (<span class="elsevierStyleItalic">L.</span>) <span class="elsevierStyleItalic">mexicana</span>.<a class="elsevierStyleCrossRef" href="#bib0068"><span class="elsevierStyleSup">68</span></a> Docking results showed that ELAP is able to form stable complexes with favorable binding energy with key enzymes of the metabolic pathway such as glycolysis (glyceraldehyde 3-phosphate dehydrogenase: −8.5 kcal/mol to −8.3 kcal/ mol); electron transport chain (Cytochrome C: −10.0 kcal/mol to −9.0 kcal/mol); and lipid metabolism (lanosterol C-14 demethylase: −8.4 kcal/mol to −8.2 kcal/mol) of <span class="elsevierStyleItalic">Leishmania</span> spp.<a class="elsevierStyleCrossRef" href="#bib0068"><span class="elsevierStyleSup">68</span></a></p></span></span><span id="sec0011" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0013">Conclusion and remarks</span><p id="para0036" class="elsevierStylePara elsevierViewall">More effective drugs with low toxicity for the treatment of NDs are needed, which has encouraged studies with natural products and their derivatives as potential sources. Thereby, the results presented in this review indicate safety and efficacy of ELAP as a promising drug for use in the treatment of different parasitic diseases, such as malaria, Chagas disease and leishmaniasis. The accumulated knowledge in the past 19 years about the successful tests with ELAP compound in preclinical trials for the treatment of these NTDs motivated the present review study, highlighting a potential multi-target drug for these parasites, based on its notable chemical property and the ability to act as an oxidizing or dehydrogenating agent.</p><p id="para0037" class="elsevierStylePara elsevierViewall">To the best of our knowledge, <span class="elsevierStyleItalic">in vitro</span> assays and studies with infection models, aiming to establish the efficacy and understanding of the mode of action is more advanced for tegumentary leishmaniasis compared to those related to malaria and Chagas disease. Available expertise on the <span class="elsevierStyleItalic">Leishmania</span> spp. infection model shows evidence that supports the potential of ELAP as a multi-directed compound capable of interrupting the network interactions of important parasite enzymes, representing a promising approach for the treatment of these parasitic diseases. These data certainly point to the possibility of combination therapy of ELAP with MA for the treatment of CL,<a class="elsevierStyleCrossRef" href="#bib0059"><span class="elsevierStyleSup">59</span></a> since different chemical structures and mechanisms of action of both drugs may interfere on multiple physiological targets, obtaining a synergistic or additive effect on the parasites.<a class="elsevierStyleCrossRef" href="#bib0068"><span class="elsevierStyleSup">68</span></a></p><p id="para0038" class="elsevierStylePara elsevierViewall">Furthermore, the combination of ELAP and pentavalent antimonials might represent a therapeutic line with a better balance between effectiveness and toxicity, preventing or minimizing some known adverse effects of current therapy. In addition, this approach can avoid the appearance of refractory strains. In this context, there is the possibility to study the use of ELAP combined with traditional therapies for other NDs.</p><p id="para0039" class="elsevierStylePara elsevierViewall">Aiming to improve the effects on parasites and reduce the incidence of adverse effects, there is also the alternative to incorporate ELAP in drug delivery systems based on micro and nanotechnology. This approach can increase stability and bioavailability as well as promote a more efficient release of the compound.<a class="elsevierStyleCrossRef" href="#bib0069"><span class="elsevierStyleSup">69</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">70</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0071"><span class="elsevierStyleSup">71</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0072"><span class="elsevierStyleSup">72</span></a></p><p id="para0040" class="elsevierStylePara elsevierViewall">Data gathered here show evidence that studies with <span class="elsevierStyleItalic">Leishmania</span> spp. provide the necessary information for conducting a high technology readiness level (TRL)/ manufacturing readiness level (MRL),<a class="elsevierStyleCrossRef" href="#bib0073"><span class="elsevierStyleSup">73</span></a> sinceproofs-of-concept have have already been completed. Thus, the set of results gathered available to the scientific community indicate ELAP as a viable product worthy of development as a drug.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:7 [ 0 => array:3 [ "identificador" => "xres1877551" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abss0001" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1628617" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "sec0001" "titulo" => "Introduction" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0002" "titulo" => "Neglected diseases general considerations" ] 1 => array:2 [ "identificador" => "sec0003" "titulo" => "The critical situation on Malaria, Chagas Disease and Leishmaniasis treatment" ] 2 => array:2 [ "identificador" => "sec0004" "titulo" => "Insights into naphthoquinones as potential drugs to treat infection Plasmodium spp., Trypanosoma cruzi and Leishmania spp." ] ] ] 3 => array:3 [ "identificador" => "sec0005" "titulo" => "Epoxy-α-lapachone" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0006" "titulo" => "Synthesis and chemical characterization" ] 1 => array:2 [ "identificador" => "sec0007" "titulo" => "Antiparasitic activity" ] 2 => array:2 [ "identificador" => "sec0008" "titulo" => "Combination therapy" ] 3 => array:2 [ "identificador" => "sec0009" "titulo" => "Toxicity" ] 4 => array:2 [ "identificador" => "sec0010" "titulo" => "Mechanism of action on the protozoan parasites" ] ] ] 4 => array:2 [ "identificador" => "sec0011" "titulo" => "Conclusion and remarks" ] 5 => array:2 [ "identificador" => "xack661108" "titulo" => "Funding" ] 6 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-09-22" "fechaAceptado" => "2023-01-13" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1628617" "palabras" => array:6 [ 0 => "Naphthoquinone" 1 => "Epoxy-α-lapachone" 2 => "Treatment" 3 => "Leishmaniasis" 4 => "Chagas disease" 5 => "Malaria" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abss0001" class="elsevierStyleSection elsevierViewall"><p id="spara004" class="elsevierStyleSimplePara elsevierViewall">Natural products and their derivatives have been sources of search and research for new drugs for the treatment of neglected diseases. Naphthoquinones, a special group of quinones, are products of natural metabolites with a wide spectrum of biological activities and represent a group of interesting molecules for new therapeutic propositions. Among these compounds, lapachol stands out as a molecule from the heartwood of <span class="elsevierStyleItalic">Tabebuia</span> sp. whose structural changes resulted in compounds considered promising, such as epoxy-α-lapachone (ELAP). The biological activity of ELAP has been demonstrated, so far, for parasitic protozoa such as <span class="elsevierStyleItalic">Leishmania</span> spp., <span class="elsevierStyleItalic">Trypanosoma cruzi</span> and <span class="elsevierStyleItalic">Plasmodium</span> spp., species causing diseases needing new drug development and adequate health policy. This work gathers <span class="elsevierStyleItalic">in vitro</span> and <span class="elsevierStyleItalic">in vivo</span> studies on these parasites, as well as the toxicity profile, and the probable mechanisms of action elucidated until then. The potential of ELAP-based technology alternatives for a further drug is discussed here.</p></span>" ] ] "multimedia" => array:3 [ 0 => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1809 "Ancho" => 2500 "Tamanyo" => 176639 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Naphthoquinone anti-parasitic activity plot based on experimental assays.</span> The compounds α-lapachone (A), β-lapachone (B), 2,2-dimethylspiro[3H-benzo[f][1]benzofuran-9,2′-oxirane]-4-one (C), 2,2-dimethylspiro[3,4,6,7,8,9-hexahydrobenzo[g]chromene-10,2′-oxirane]-5-one (D), 2,2-dimethylspiro[3,4-dihydrobenzo[h]chromene-6,2′-oxirane]-5-one (E) and epoxy-α -lapachone (F) were selected according to structural similarity (>50%) using the ChEMBL Database (<span class="elsevierStyleInterRef" id="interref0001" href="https://www.ebi.ac.uk/chembl/">https://www.ebi.ac.uk/chembl/</span>). This analysis shows the activities of these molecules against to <span class="elsevierStyleItalic">Plasmodium</span> spp. (purple circle), <span class="elsevierStyleItalic">Trypanosoma cruzi</span> (yellow circle), and <span class="elsevierStyleItalic">Leishmania</span> spp. (green circle) based on IC<span class="elsevierStyleInf">50</span> values normalized (pChEMBL value). The circle sizes show a predict values of permeability (ALogP) of these compounds.</p>" ] ] 1 => array:8 [ "identificador" => "fig0002" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 916 "Ancho" => 2000 "Tamanyo" => 136105 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara002" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Predicted epoxy-α-lapachone regions interactions with amino acid residues of the active site of trypanosomatid proteases.</span> Epoxy-α-lapachone (2,3-Dihydro-3,3-dimethylspiro[1H-4-oxanthracene-5,2′-oxiran]−10(5H)-one) is formed by an aromatic ring (A), a central six-membered ring (B) and a ring with two methyl groups (C). The chiral center being the C12 atom, which is also part of the three-membered epoxide ring.<a class="elsevierStyleCrossRef" href="#bib0044"><span class="elsevierStyleSup">44</span></a> CID: 12,000,280; molecular formula:C<span class="elsevierStyleInf">16</span>H<span class="elsevierStyleInf">16</span>O<span class="elsevierStyleInf">3</span> and molecular mass: 256.3 g/mol. Epoxy-α-lapachone regions interactions with amino acid residues of cysteine-proteinase (green) of <span class="elsevierStyleItalic">Trypanosoma cruzi</span><a class="elsevierStyleCrossRef" href="#bib0048"><span class="elsevierStyleSup">48</span></a> and serine-proteinase (orange) of <span class="elsevierStyleItalic">Leishmania</span> (<span class="elsevierStyleItalic">Leishmania</span>) <span class="elsevierStyleItalic">amazonensis</span>.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a></p>" ] ] 2 => array:8 [ "identificador" => "tbl0001" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0003" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0001"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleBold">Species</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0002"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleBold">Evolutive form</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0003"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleBold">Biological Activity</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0004"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleBold">References</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0005"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="8" align="left" valign="top"><span class="elsevierStyleItalic">Tripanosoma cruzi</span></td><a name="en0006"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="3" align="left" valign="top">Epimastigote (strain Dm28c)</td><a name="en0007"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">LD<span class="elsevierStyleInf">50</span> < 3.1 µM - 72 h \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0008"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><a class="elsevierStyleCrossRef" href="#bib0046"><span class="elsevierStyleSup">46</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0011"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">IC<span class="elsevierStyleInf">50</span> = 1.3 µM - 72 h \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0012"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><a class="elsevierStyleCrossRef" href="#bib0047"><span class="elsevierStyleSup">47</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0015"></a><td class="td" title="\n